SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marras A.) srt2:(2020-2024)"

Sökning: WFRF:(Marras A.) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sanchez, Erlan, et al. (författare)
  • Association of plasma biomarkers with cognition, cognitive decline, and daily function across and within neurodegenerative diseases: Results from the Ontario Neurodegenerative Disease Research Initiative
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:3, s. 1753-1770
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: We investigated whether novel plasma biomarkers are associated with cognition, cognitive decline, and functional independence in activities of daily living across and within neurodegenerative diseases. METHODS: Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), phosphorylated tau (p-tau)181 and amyloid beta (Aβ)42/40 were measured using ultra-sensitive Simoa immunoassays in 44 healthy controls and 480 participants diagnosed with Alzheimer's disease/mild cognitive impairment (AD/MCI), Parkinson's disease (PD), frontotemporal dementia (FTD) spectrum disorders, or cerebrovascular disease (CVD). RESULTS: GFAP, NfL, and/or p-tau181 were elevated among all diseases compared to controls, and were broadly associated with worse baseline cognitive performance, greater cognitive decline, and/or lower functional independence. While GFAP, NfL, and p-tau181 were highly predictive across diseases, p-tau181 was more specific to the AD/MCI cohort. Sparse associations were found in the FTD and CVD cohorts and for Aβ42/40. DISCUSSION: GFAP, NfL, and p-tau181 are valuable predictors of cognition and function across common neurodegenerative diseases, and may be useful in specialized clinics and clinical trials.
  •  
2.
  • Graafsma, Heinz, et al. (författare)
  • Detector developments for photon science at DESY
  • 2023
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The past, current and planned future developments of X-ray imagers in the Photon-Science Detector Group at DESY-Hamburg is presented. the X-ray imagers are custom developed and tailored to the different X-ray sources in Hamburg, including the storage ring PETRA III/IV; the VUV-soft X-ray free electron laser FLASH, and the European Free-Electron Laser. Each source puts different requirements on the X-ray detectors, which is described in detail, together with the technical solutions implemented. 
  •  
3.
  • Mezza, D., et al. (författare)
  • Calibration methods for charge integrating detectors
  • 2022
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the introduction of the extremely intense X-ray free electron lasers, the need for low noise, high dynamic range and potentially fast charge integrating detectors has increased significantly. Among all the problems that research and development groups have to face in the development of such detectors, their calibration represents one of the most challenging and the collaboration between the detector development and user groups is of fundamental importance. The main challenge is to develop a calibration suite that is capable to test the detector over a wide dynamic range, with a high granularity and a very high linearity, together with a certain radiation tolerance and the possibility to well define the timings and the synchronization with the detector. Practical considerations have also to be made like the possibility to calibrate the detector in a reasonable time, the availability of the calibration source at the experimental place and so on. Such a calibration test suite is often not represented by a single source but by several sources that can cover different parts of the dynamic range and that need to be cross calibrated to have a final calibration curve. In this respect an essential part of the calibration is also to develop a mathematical model that allows calibrating the entire dynamic range, taking into account features that are calibration source and/or detector specific. The aim of this contribution is to compare the calibration for the AGIPD detector using several calibration sources such as internal current source, backside pulsing, IR pulsed laser, LED light and mono-energetic protons. The mathematical procedure used to calibrate the different sources will be discussed in great detail showing how to take into account a few shortcomings (like pixel coupling) that are common for many charge integrating detectors. This work has been carried out in the frame of the AGIPD project for the European X-ray Free Electron Laser. 
  •  
4.
  • Pallanti, S., et al. (författare)
  • Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty
  • 2021
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X. ; 52, s. 72-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-Invasive Brain Stimulation (NIBS) techniques and in particular, repetitive Transcranial Magnetic Stimulation (rTMS), are developing beyond mere clinical application. Although originally purposed for the treatment of resistant neuropsychiatric disorders, NIBS is also contributing to a deeper understanding of psychiatric disorders. rTMS is also changing the model of the disorder itself, from “mental” to one of neural connectivity. TMS allows the assessment of brain circuit excitability and eventually, of plastic changes affecting these circuits. While a clinical translational approach is, at the present time, the most adequate to meet the dimensional-circuit base model of the disorder, it refines the standard categorical classification of psychiatric disorders. The discovery of the fundamental importance of the balance between neuroplasticity and inflammation is also now explored through neuro-modulation findings consistently with the evidence of anti-inflammatory actions of the magnetic pulses. rTMS may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity of brain-induced electric field. Of particular interest, yet still unclear, is how the relatively unspecific nature of TMS stimulation may lead to specific neuronal reorganization, as well as a definition of the TMS-triggered reorganization of functional brain modules, raising attention on the importance of the active participation of the patient to the treatment. Configuration and state of consciousness of the subject have made subjective experience under treatment regain importance in the neuro-scientific Psychiatry based on the requirement of United States National Institute of Health (NIH) and the substantial importance of the consciousness state in the efficacy of the TMS treatment. By focusing on the subjective experience, a renaissance of the phenomenology offers Psychiatry an opportunity to become proficient and to distinguish itself from other disciplines. For all these reasons, TMS should be included in the cluster of the sub-specialties as a new “Super-Specialty” and an appropriate training course has to be inaugurated. Psychiatrists are nowadays multi-specialists, moving from a specialty to another, vs super-specialist. The cultivation of a properly trained cohort of TMS psychiatrists will better meet the challenges of treatment-resistant psychiatric conditions (disorders of connectivity), through appropriate and ethical practice, meanwhile facilitating an informed development and integration of additional emerging neuro-modulation techniques. The aim of this consensus paper is to underline the interdisciplinary nature of NIBS, that also encompasses the subjective experience and to point out the necessity of a neuroscience-applied approach to NIBS in the context of the European College of Neuro-psychopharmacology (ECNP). © 2021
  •  
5.
  • Correa, J., et al. (författare)
  • The PERCIVAL detector : first user experiments
  • 2023
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 30, s. 242-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.
  •  
6.
  •  
7.
  • Marras, A., et al. (författare)
  • Development of CoRDIA : An Imaging Detector for next-generation Synchrotron Rings and Free Electron Lasers
  • 2022
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • An x-ray imager is being developed for use in diffraction-limited synchrotron rings and continuous wave free electron lasers. The imager is named CoRDIA (COntinuous Readout Digitising Imager Array) and aims at achieving continuous operation at a frame rate in excess of 100kHz. Other goals include single-photon sensitivity at 12 keV (or below), a full well in excess of 10k photon/pixel/image, and a 100μm pixel pitch. The detector ASIC will be compatible with multiple sensor materials to cover different energy ranges. Exploratory prototypes of the readout ASIC (basic circuital blocks) have been manufactured in TSMC 65nm technology: they are presently under test. 
  •  
8.
  • Marras, A., et al. (författare)
  • Development of the Continuous Readout Digitising Imager Array detector
  • 2024
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 19:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoRDIA project aims to develop an X-ray imager capable of continuous operation in excess of 100 kframe/s. The goal is to provide a suitable instrument for Photon Science experiments at diffraction-limited Synchrotron Rings and Free Electron Lasers considering Continuous Wave operation. Several chip prototypes were designed in a 65 nm process: in this paper we will present an overview of the challenges and solutions adopted in the ASIC design. 
  •  
9.
  •  
10.
  • Pinaroli, G., et al. (författare)
  • PERCIVAL : Possible applications in X-ray micro-tomography
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray computed micro-tomography (μCT) is one of the most advanced and common non-destructive techniques in the field of medical imaging and material science. It allows recreating virtual models (3D models), without destroying the original objects, by measuring three-dimensional X-ray attenuation coefficient maps of samples on the (sub) micrometer scale. The quality of the images obtained using μCT is strongly dependent on the performance of the associated X-ray detector i.e. to the acquisition of information of the X-ray beam traversing the patient/sample being precise and accurate. Detectors for μCT have to meet the requirements of the specific tomography procedure in which they are going to be used. In general, the key parameters are high spatial resolution, high dynamic range, uniformity of response, high contrast sensitivity, fast acquisition readout and support of high frame rates. At present the detection devices in commercial μCT scanners are dominated by charge-coupled devices (CCD), photodiode arrays, CMOS acquisition circuits and more recently by hybrid pixel detectors. Monolithic CMOS imaging sensors, which offer reduced pixel sizes and low electronic noise, are certainly excellent candidates for μCT and may be used for the development of novel high-resolution imaging applications. The uses of monolithic CMOS based detectors such as the PERCIVAL detector are being recently explored for synchrotron and FEL applications. PERCIVAL was developed to operate in synchrotron and FEL facilities in the soft X-ray regime from 250 eV to 1 keV and it could offer all the aforementioned technical requirements needed in μCT experiments. In order to adapt the system for a typical tomography application, a scintillator is required, to convert incoming X-ray radiation (∼ tens of KeV) into visible light which may be detected with high efficiency. Such a taper-based scintillator was developed and mounted in front of the sensitive area of the PERCIVAL imager. In this presentation we will report the setup of the detector system and preliminary results of first μCTs of reference objects, which were performed in the TomoLab at ELETTRA. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy