SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matos Maravi P.) srt2:(2021)"

Sökning: WFRF:(Matos Maravi P.) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ribeiro, P. G., et al. (författare)
  • A bioinformatic platform to integrate target capture and whole genome sequences of various read depths for phylogenomics
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:23, s. 6021-6035
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing availability of short-read whole genome sequencing (WGS) provides unprecedented opportunities to study ecological and evolutionary processes. Although loci of interest can be extracted from WGS data and combined with target sequence data, this requires suitable bioinformatic workflows. Here, we test different assembly and locus extraction strategies and implement them into secapr, a pipeline that processes short-read data into multilocus alignments for phylogenetics and molecular ecology analyses. We integrate the processing of data from low-coverage WGS (<30x) and target sequence capture into a flexible framework, while optimizing de novo contig assembly and loci extraction. Specifically, we test different assembly strategies by contrasting their ability to recover loci from targeted butterfly protein-coding genes, using four data sets: a WGS data set across different average coverages (10x, 5x and 2x) and a data set for which these loci were enriched prior to sequencing via target sequence capture. Using the resulting de novo contigs, we account for potential errors within contigs and infer phylogenetic trees to evaluate the ability of each assembly strategy to recover species relationships. We demonstrate that choosing multiple sizes of kmer simultaneously for assembly results in the highest yield of extracted loci from de novo assembled contigs, while data sets derived from sequencing read depths as low as 5x recovers the expected species relationships in phylogenetic trees. By making the tested assembly approaches available in the secapr pipeline, we hope to inspire future studies to incorporate complementary data and make an informed choice on the optimal assembly strategy.
  •  
2.
  • Chazot, Nicolas, et al. (författare)
  • Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.
  •  
3.
  • Matos-Maraví, Pável, et al. (författare)
  • Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae)
  • 2021
  • Ingår i: Biological Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4066 .- 1095-8312. ; 133:3, s. 704-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional species diversity is explained ultimately by speciation, extinction and dispersal. Here, we estimate dispersal and speciation rates of Neotropical butterflies to propose an explanation for the distribution and diversity of extant species. We focused on the tribe Brassolini (owl butterflies and allies), a Neotropical group that comprises 17 genera and 108 species, most of them endemic to rainforest biomes. We inferred a robust species tree using the multispecies coalescent framework and a dataset including molecular and morphological characters. This formed the basis for three changes in Brassolini classification: (1) Naropina syn. nov. is subsumed within Brassolina; (2) Aponarope syn. nov. is subsumed within Narope; and (3) Selenophanes orgetorix comb. nov. is reassigned from Catoblepia to Selenophanes. By applying biogeographical stochastic mapping, we found contrasting species diversification and dispersal dynamics across rainforest biomes, which might be explained, in part, by the geological and environmental history of each bioregion. Our results revealed a mosaic of biome-specific evolutionary histories within the Neotropics, where butterfly species have diversified rapidly (cradles: Mesoamerica), have accumulated gradually (museums: Atlantic Forest) or have diversified and accumulated alternately (Amazonia). Our study contributes evidence from a major butterfly lineage that the Neotropics are a museum and a cradle of species diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy