SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mayer Larry) "

Sökning: WFRF:(Mayer Larry)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
4.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
5.
  •  
6.
  • Dorschel, Boris, et al. (författare)
  • The International Bathymetric Chart of the Southern Ocean Version 2
  • 2022
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60 degrees S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50 degrees S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50 degrees S.
  •  
7.
  • Freire, Francis, et al. (författare)
  • High resolution mapping of offshore and onshore glaciogenic features in metamorphic bedrock terrain, Melville Bay, northwestern Greenland
  • 2015
  • Ingår i: Geomorphology. - : Elsevier BV. - 0169-555X .- 1872-695X. ; 250, s. 29-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomorphological studies of previously glaciated landscapes are important to understand how ice sheets and glaciers respond to rapidly changing climate. Melville Bay, in northwestern Greenland, contains some of the most sensitive but least studied ice sheet sectors in the northern hemisphere, where the bathymetric knowledge previously was restricted to a few sparsely distributed single beam echo soundings. We present here the results of high-resolution, geomorphological mapping of the offshore and onshore landscapes in Melville Bay using multibeam sonar and satellite data, at 5- and 10-m resolutions respectively. The results show a similar areally-scoured bedrock-dominated landscape with a glacially modified cnoc-and-lochan morphology on the inner shelf (150-500 m depth) and on the nearby exposed coast. This is manifested by the presence of U-shaped troughs, moutonee-type elongated landforms, stoss-and-lee forms, and streamlined features. The submarine landscape shows features that are characteristic of bedrock in folded, faulted, and weathered metamorphic terrain, and, to a lesser extent, glacially molded bedforms; while coastal landforms exhibit higher relief, irregular-shaped basins, and more subdued fracture valleys. Although generally similar, the onshore and offshore landscapes contain examples of distinctly different landform patterns, which are interpreted to reflect a longer exposure to long-term deep weathering as well as to more recent periglacial weathering processes on land. The spatial variability in the distribution of landforms across the landscape in both study areas is mostly attributed to differences in lithological properties of the bedrock. The lack of sediment cover on the inner shelf is likely a result of a capacity for sediment erosion and removal by the West Greenland Current flowing northward over the area in combination with limited sediment supply from long sea ice-cover seasons. The distribution and orientation of the landforms in the offshore part indicate ice movement toward the NW, and suggests that this area acted as a tributary or onset region for the major paleo ice stream that formed the present day Melville Bay Trough.
  •  
8.
  • Glueder, Anna, et al. (författare)
  • Calibrated relative sea levels constrain isostatic adjustment and ice history in northwest Greenland
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 293
  • Tidskriftsartikel (refereegranskat)abstract
    • Relative Sea Levels (RSLs) derived primarily from marine bivalves near Petermann Glacier, NW Greenland, constrain past regional ice-mass changes through glacial isostatic adjustment (GIA) modeling. Oxygen isotopes measured on bivalves corrected for shell-depth habitat and document changing meltwater input. Rapid RSL fall of up to 62 m/kyr indicates ice loss at or prior to ∼9 ka. Transition to an RSL stillstand starting at ∼6 ka reflects renewed ice-mass loading followed by further mass loss over the past few millennia. GIA simulations of rapid early RSL fall suggest a low regional upper-mantle viscosity. Early loss of grounded ice tracks atmospheric warming and pre-dates the eventual collapse of Petermann Glacier's floating ice tongue near ∼7 ka, suggesting grounding zone stabilization during early phases of deglaciation. We hypothesize mid-Holocene regrowth of regional ice caps in response to cooling and increased precipitation, following loss of the floating shelf ice. Remnants of these ice caps remain present but are now melting.
  •  
9.
  •  
10.
  • Hell, Benjamin, 1977- (författare)
  • Towards the compilation of a new Digital Bathymetric Model of the North Atlantic Ocean
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Topography on land and bathymetry, its underwater depth equivalent, belong to the most fundamental attributes of the solid earth's surface. Over two thirds of the earth is covered by water, with about 90% of this area lying more than 1000m below the sea surface. In contrast to the land area, most of the deep sea remains largely unexplored and to date the topography of the Moon or Mars is much better known than the bathymetry of large parts of our own planet.Deep sea ocean mapping can directly be carried out with ship-bound echo sounders or indirectly through a remote sensing method known as satellite altimetry. Modern echo sounding technology allows for high resolution mapping with unsurpassed accuracy. Due to the vastness of the oceans, however, even after decades of mapping activity, the oceans are far from completely surveyed, and the echo soundings accumulated over the time with different, meanwhile evolving technologies are of highly varying quality. Satellite altimetry, on the contrary, provides virtually complete coverage of the entire globe, although the achieved resolution and accuracy is limited. For the compilation of consistent, ocean spanning Digital Bathymetric Models (DBMs) from raw depth measurements, an appropriate data basis is therefore a heterogeneous mixture of historical and contemporary echo soundings, complemented by satellite altimetry as needed. The North Atlantic is by far the best mapped of all oceans and as such it provides an ideal area to study scientific problems related to ocean mapping and DBM compilation. The heterogeneity and size of the global bathymetric data basis require powerful solutions to handle and process both data and metadata effectively. In this work, a spatial relational database in combination with a geographical information system (GIS) form a flexible tool kit for a DBM compilation, and a data model for the storage and retrieval of both data and metadata is developed. In a case study I show the potential of the available sounding data in the North Atlantic to derive a DBM with significant improvements over the models commonly used today. Many geoscientific applications require that data sets are sampled on a regularly spaced grid, notwithstanding the fact that data acquisition often provides measurements at irregular positions and with incomplete coverage.Several methods exist for interpolating and gridding raw data to obtain gapless grids. In ocean mapping, minimum curvature bicubic splines in tension are a commonly used approach. This work presents a refined technique, multiple resolution splines in tension. The method takes the local data density into consideration during the gridding process, in order to reduce gridding artifacts mainly caused by very inhomogeneous data coverage. It is shown that multiple resolution splines in tension allow for a high maximum grid resolution, without introducing artifacts that appear with regular splines in tension interpolation at the same resolution.
  •  
11.
  • Hogan, Kelly A., et al. (författare)
  • Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland
  • 2020
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 14:1, s. 261-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Petermann Fjord is a deep ( > 1000 m) fjord that incises the coastline of north-west Greenland and was carved by an expanded Petermann Glacier, one of the six largest outlet glaciers draining the modern Greenland Ice Sheet (GrIS). Between 5 and 70 m of unconsolidated glacigenic material infills in the fjord and adjacent Nares Strait, deposited as the Petermann and Nares Strait ice streams retreated through the area after the Last Glacial Maximum. We have investigated the deglacial deposits using seismic stratigraphic techniques and have correlated our results with high-resolution bathymetric data and core lithofacies. We identify six seismoacoustic facies in more than 3500 line kilometres of subbottom and seismic-reflection profiles throughout the fjord, Hall Basin and Kennedy Channel. Seismo-acoustic facies relate to bedrock or till surfaces (Facies I), subglacial deposition (Facies II), deposition from meltwater plumes and icebergs in quiescent glacimarine conditions (Facies III, IV), deposition at grounded ice margins during stillstands in retreat (grounding-zone wedges; Facies V) and the redeposition of material downslope (Facies IV). These sediment units represent the total volume of glacial sediment delivered to the mapped marine environment during retreat. We calculate a glacial sediment flux for the former Petermann ice stream as 1080-1420 m(3) a(-1) per metre of ice stream width and an average deglacial erosion rate for the basin of 0.29-0.34 mm a(-1). Our deglacial erosion rates are consistent with results from Antarctic Peninsula fjord systems but are several times lower than values for other modern GrIS catchments. This difference is attributed to fact that large volumes of surface water do not access the bed in the Petermann system, and we conclude that glacial erosion is limited to areas overridden by streaming ice in this large outlet glacier setting. Erosion rates are also presented for two phases of ice retreat and confirm that there is significant variation in rates over a glacial-deglacial transition. Our new glacial sediment fluxes and erosion rates show that the Petermann ice stream was approximately as efficient as the palaeo-Jakobshavn Isbra at eroding, transporting and delivering sediment to its margin during early deglaciation.
  •  
12.
  • Jakobsson, Martin, et al. (författare)
  • Arctic Ocean Bathymetry : A Necessary Geospatial Framework
  • 2015
  • Ingår i: Arctic. - : The Arctic Institute of North America. - 0004-0843 .- 1923-1245. ; 68, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Most ocean science relies on a geospatial infrastructure that is built from bathymetry data collected from ships underway, archived, and converted into maps and digital grids. Bathymetry, the depth of the seafloor, besides having vital importance to geology and navigation, is a fundamental element in studies of deep water circulation, tides, tsunami forecasting, upwelling, fishing resources, wave action, sediment transport, environmental change, and slope stability, as well as in site selection for platforms, cables, and pipelines, waste disposal, and mineral extraction. Recent developments in multibeam sonar mapping have-so dramatically increased the resolution with which the seafloor can be portrayed that previous representations must be considered obsolete. Scientific conclusions based on sparse bathymetric information should be re-examined and refined. At this time only about 11% of the Arctic Ocean has been mapped with multibeam; the rest of its seafloor area is portrayed through mathematical interpolation using a very sparse depth-sounding database. In order for all Arctic marine activities to benefit fully from the improvement that multibeam provides, the entire Arctic Ocean must be multibeam-mapped, a task that can be accomplished only through international coordination and collaboration that includes the scientific community, naval institutions, and industry.
  •  
13.
  • Jakobsson, Martin, et al. (författare)
  • Arctic Ocean glacial history
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 92, s. 40-67
  • Forskningsöversikt (refereegranskat)abstract
    • While there are numerous hypotheses concerning glacial interglacial environmental and climatic regime shifts in the Arctic Ocean, a holistic view on the Northern Hemisphere's late Quaternary ice-sheet extent and their impact on ocean and sea-ice dynamics remains to be established. Here we aim to provide a step in this direction by presenting an overview of Arctic Ocean glacial history, based on the present state-of-the-art knowledge gained from field work and chronological studies, and with a specific focus on ice-sheet extent and environmental conditions during the Last Glacial Maximum (LGM). The maximum Quaternary extension of ice sheets is discussed and compared to LGM. We bring together recent results from the circum-Arctic continental margins and the deep central basin; extent of ice sheets and ice streams bordering the Arctic Ocean as well as evidence for ice shelves extending into the central deep basin. Discrepancies between new results and published LGM ice-sheet reconstructions in the high Arctic are highlighted and outstanding questions are identified. Finally, we address the ability to simulate the Arctic Ocean ice sheet complexes and their dynamics, including ice streams and ice shelves, using presently available ice-sheet models. Our review shows that while we are able to firmly reject some of the earlier hypotheses formulated to describe Arctic Ocean glacial conditions, we still lack information from key areas to compile the holistic Arctic Ocean glacial history.
  •  
14.
  • Jakobsson, Martin, 1966-, et al. (författare)
  • Polar Region Bathymetry : Critical Knowledge for the Prediction of Global Sea Level Rise
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • The ocean and the marine parts of the cryosphere interact directly with, and are affected by, the seafloor and its primary properties of depth (bathymetry) and shape (morphology) in many ways. Bottom currents are largely constrained by undersea terrain with consequences for both regional and global heat transport. Deep ocean mixing is controlled by seafloor roughness, and the bathymetry directly influences where marine outlet glaciers are susceptible to the inflow relatively warm subsurface waters - an issue of great importance for ice-sheet discharge, i.e., the loss of mass from calving and undersea melting. Mass loss from glaciers and the Greenland and Antarctic ice sheets, is among the primary drivers of global sea-level rise, together now contributing more to sea-level rise than the thermal expansion of the ocean. Recent research suggests that the upper bounds of predicted sea-level rise by the year 2100 under the scenarios presented in IPCC’s Special Report on the Ocean and Cryosphere in a Changing Climate (SROCCC) likely are conservative because of the many unknowns regarding ice dynamics. In this paper we highlight the poorly mapped seafloor in the Polar regions as a critical knowledge gap that needs to be filled to move marine cryosphere science forward and produce improved understanding of the factors impacting ice-discharge and, with that, improved predictions of, among other things, global sea-level. We analyze the bathymetric data coverage in the Arctic Ocean specifically and use the results to discuss challenges that must be overcome to map the most remotely located areas in the Polar regions in general. 
  •  
15.
  • Jakobsson, Martin, et al. (författare)
  • Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
  • 2017
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 13:8, s. 991-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow (similar to 53 m) strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data) have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9-11.7 cal ka BP). Here we provide new information on the deglacial and post-glacial evolution of the Arctic-Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b) and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.
  •  
16.
  • Jakobsson, Martin, et al. (författare)
  • Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill
  • 2020
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. Here we acquired oceanographic data and multibeam bathymetry in the previously uncharted Sherard Osborn Fjord in northwest Greenland where Ryder Glacier drains into the Arctic Ocean. Our data show that warmer subsurface water of Atlantic origin enters the fjord, but Ryder Glacier’s floating tongue at its present location is partly protected from the inflow by a bathymetric sill located in the innermost fjord. This reduces under-ice melting of the glacier, providing insight into Ryder Glacier’s dynamics and its vulnerability to inflow of Atlantic warmer water.
  •  
17.
  • Jakobsson, Martin, et al. (författare)
  • The Early Miocene Onset of a Ventilated Circulation Regime in the Arctic Ocean
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7147, s. 986-990
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic’s deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated (‘ventilated’) conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygenpoor ‘lake stage’, to a transitional ‘estuarine sea’ phase with variable ventilation, and finally to the fully ventilated ‘ocean’ phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum, although it remains unclear if there is a causal relationship between these two events.
  •  
18.
  • Jakobsson, Martin, et al. (författare)
  • The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (similar to 730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.
  •  
19.
  • Jakobsson, Martin, et al. (författare)
  • The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0
  • 2012
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Bathymetric Chart of the Arctic Ocean (IBCAO) released its first gridded bathymetric compilation in 1999. The IBCAO bathymetric portrayals have since supported a wide range of Arctic science activities, for example, by providing constraint for ocean circulation models and the means to define and formulate hypotheses about the geologic origin of Arctic undersea features. IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data collected from fishing vessels, data acquired from US Navy submarines and from research ships of various nations. Built using an improved gridding algorithm, this new grid is on a 500 meter spacing, revealing much greater details of the Arctic seafloor than IBCAO Version 1.0 (2.5 km) and Version 2.0 (2.0 km). The area covered by multibeam surveys has increased from similar to 6% in Version 2.0 to similar to 11% in Version 3.0. Citation: Jakobsson, M., et al. (2012), The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, doi:10.1029/2012GL052219.
  •  
20.
  • Jakobsson, Martin, et al. (författare)
  • The International Bathymetric Chart of the Arctic Ocean Version 4.0
  • 2020
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 x 200m versus 500 x 500m) and with individual depth soundings constraining three times more area of the Arctic Ocean (similar to 19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises similar to 14.3% in Ver. 4.0 compared to similar to 5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet. Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12369314
  •  
21.
  • Lomac-MacNair, Kate, et al. (författare)
  • Seal Occurrence and Habitat Use during Summer in Petermann Fjord, Northwestern Greenland
  • 2018
  • Ingår i: Arctic. - : The Arctic Institute of North America. - 0004-0843 .- 1923-1245. ; 71:3, s. 334-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-associated seals are considered especially susceptible and are potentially the first to modify distribution and habitat use in response to physical changes associated with the changing climate. Petermann Glacier, part of a unique ice-tongue fjord environment in a rarely studied region of northwestern Greenland, lost substantial sections of its ice tongue during major 2010 and 2012 calving events. As a result, changes in seal habitat may have occurred. Seal occurrence and distribution data were collected in Petermann Fjord and adjacent Nares Strait region over 27 days (2 to 28 August) during the multidisciplinary scientific Petermann 2015 Expedition on the icebreaker Oden. During 239.4 hours of dedicated observation effort, a total of 312 individuals were recorded, representing four species: bearded seal (Erignathus barbatus), hooded seal (Crystophora cristata), harp seal (Pagophilus groenlandicus), and ringed seal (Pusa hispida). Ringed seals were recorded significantly more than the other species (chi(2) = 347.4, df = 3, p < 0.001, n = 307). We found significant differences between species in haul-out (resting on ice) behavior (chi(2) = 133.1, df = 3, p < 0.001, n = 307). Bearded seals were more frequently hauled out (73.1% n = 49), whereas ringed seals were almost exclusively in water (93.9%, n = 200). Differences in average depth and ice coverage where species occurred were also significant: harp seals and bearded seals were found in deeper water and areas of greater ice coverage (harp seals: 663 +/- 366 m and 65 +/- 14% ice cover; bearded seals: 598 +/- 259 m and 50 +/- 21% ice cover), while hooded seals and ringed seals were found in shallower water with lower ice coverage (hooded seals: 490 +/- 163 m and 38 +/- 19% ice cover; ringed seals: 496 +/- 235 m, and 21 +/- 20% ice cover). Our study provides an initial look at how High Arctic seals use the rapidly changing Petermann Fjord and how physical variables influence their distribution in one of the few remaining ice-tongue fjord environments.
  •  
22.
  • Mayer, Larry, et al. (författare)
  • The Nippon Foundation-GEBCO Seabed 2030 Project : The Quest to See the World's Oceans Completely Mapped by 2030
  • 2018
  • Ingår i: Geosciences. - : MDPI AG. - 2076-3263. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite many of years of mapping effort, only a small fraction of the world ocean's seafloor has been sampled for depth, greatly limiting our ability to explore and understand critical ocean and seafloor processes. Recognizing this poor state of our knowledge of ocean depths and the critical role such knowledge plays in understanding and maintaining our planet, GEBCO and the Nippon Foundation have joined forces to establish the Nippon Foundation GEBCO Seabed 2030 Project, an international effort with the objective of facilitating the complete mapping of the world ocean by 2030. The Seabed 2030 Project will establish globally distributed regional data assembly and coordination centers (RDACCs) that will identify existing data from their assigned regions that are not currently in publicly available databases and seek to make these data available. They will develop protocols for data collection (including resolution goals) and common software and other tools to assemble and attribute appropriate metadata as they assimilate regional grids using standardized techniques. A Global Data Assembly and Coordination Center (GDACC) will integrate the regional grids into a global grid and distribute to users world-wide. The GDACC will also act as the central focal point for the coordination of common data standards and processing tools as well as the outreach coordinator for Seabed 2030 efforts. The GDACC and RDACCs will collaborate with existing data centers and bathymetric compilation efforts. Finally, the Nippon Foundation GEBCO Seabed 2030 Project will encourage and help coordinate and track new survey efforts and facilitate the development of new and innovative technologies that can increase the efficiency of seafloor mapping and thus make the ambitious goals of Seabed 2030 more likely to be achieved.
  •  
23.
  •  
24.
  • O'Regan, Matt, et al. (författare)
  • The De Long Trough: A newly discovered glacial trough on the East Siberian continental margin
  • 2017
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 13:9, s. 1269-1284
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a > 65m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough - the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than similar to 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS) 6).
  •  
25.
  • O'Regan, Matt, et al. (författare)
  • The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:8, s. 4073-4097
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.
  •  
26.
  • Reilly, Brendan T., et al. (författare)
  • Holocene break-up and reestablishment of the Petermann Ice Tongue, Northwest Greenland
  • 2019
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 218, s. 322-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decade, two major calving events of the Petermann Ice Tongue in Northwest Greenland have led to speculation on its future stability and contribution to further Greenland Ice Sheet mass loss. However, it has been unclear if these events are anomalous or typical within the context of limited historical observations. We extend the historical record of the floating ice tongue using the stratigraphy of Petermann Fjord sediments to provide a longer-term perspective. Computed tomography (CT) scans, X-Ray Fluorescence (XRF) scans, Ice-Rafted Debris (IRD) counts, and the magnetic properties of specific particle size fractions constrain changes in depositional processes and sediment sources at our core sites, allowing for reconstructions of past behavior of the Petermann Ice Tongue. Radiocarbon dating of foraminifera, Pb-210, and paleomagnetic secular variation (PSV) provide age control and help to address uncertainties in radiocarbon reservoir ages. A floating ice tongue in Petermann Fjord formed in late glacial time as Petermann Glacier retreated from an advanced grounded position. This paleo-ice tongue broke-up during the early Holocene when high northern latitude summer insolation was higher than present. After gradual regrowth of the ice tongue associated with regional cooling, the ice tongue reached its historical extent only within the last millennium. Little or no ice tongue was present for nearly 5000 years during the middle Holocene, when decadal mean regional temperatures are estimated to be 0.8-2.9 degrees C higher than preindustrial (1750 CE) and seasonal sea-ice in the Lincoln Sea was reduced. This pre-historical behavior shows that recent anthropogenic warming may already be in the range of ice tongue instability and future projected warming increases the risk of ice tongue break-up by the mid-21st Century.
  •  
27.
  • Snoeijs-Leijonmalm, Pauline, et al. (författare)
  • A deep scattering layer under the North Pole pack ice
  • 2021
  • Ingår i: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 194
  • Tidskriftsartikel (refereegranskat)abstract
    • The 3.3 million km marine ecosystem around the North Pole, defined as the Central Arctic Ocean (CAO), is a blind spot on the map of the world's fish stocks. The CAO essentially comprises the permanently ice-covered deep basins and ridges outside the continental shelves, and is only accessible by ice-breakers. Traditional trawling for assessing fish stocks is impossible under the thick pack ice, and coherent hydroacoustic surveys are unachievable due to ice-breaking noise. Consequently, nothing is known about the existence of any pelagic fish stocks in the CAO, although juveniles of Boreogadus saida richly occur at the surface associated with the sea ice and ice-associated Arctogadus glacialis has been reported as well. We here present a first indication of a possible mesopelagic fish stock in the CAO. We had the opportunity to analyse a geophysical hydroacoustic data set with 13 time windows of usable acoustic data over a transect from 84.4 °N in the Nansen Basin, across the North Pole (90.0 °N), to 82.4 °N in the Canada Basin. We discovered a deep scattering layer (DSL), suggesting the presence of zooplankton and fish, at 300–600 m of depth in the Atlantic water layer of the CAO. Maximum possible fish abundance and biomass was very low; values of ca. 2,000 individuals km and ca. 50 kg km were calculated for the DSL in the North-Pole area according to a model assuming that all acoustic backscatter represents 15-cm long B. saida and/or A. glacialis. The true abundance and biomass of fish is even lower than this, but cannot be quantified from this dataset due to possible backscatter originating from pneumatophores of physonect siphonophores that are known to occur in the area. Further studies on the DSL of the CAO should include sampling and identification of the backscattering organisms. From our study we can conclude that if the central Arctic DSL contains fish, their biomass is currently too low for any sustainable fishery.
  •  
28.
  • Stranne, Christian, et al. (författare)
  • Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Although there is enough heat contained in inflowing warm Atlantic Ocean water to melt all Arctic sea ice within a few years, a cold halocline limits upward heat transport from the Atlantic water. The amount of heat that penetrates the halocline to reach the sea ice is not well known, but vertical heat transport through the halocline layer can significantly increase in the presence of double diffusive convection. Such convection can occur when salinity and temperature gradients share the same sign, often resulting in the formation of thermohaline staircases. Staircase structures in the Arctic Ocean have been previously identified and the associated double diffusive convection has been suggested to influence the Arctic Ocean in general and the fate of the Arctic sea ice cover in particular. A central challenge to understanding the role of double diffusive convection in vertical heat transport is one of observation. Here, we use broadband echo sounders to characterize Arctic thermohaline staircases at their full vertical and horizontal resolution over large spatial areas (100 s of kms). In doing so, we offer new insight into the mechanism of thermohaline staircase evolution and scale, and hence fluxes, with implications for understanding ocean mixing processes and ocean-sea ice interactions.
  •  
29.
  • Stranne, Christian, et al. (författare)
  • The climate sensitivity of northern Greenland fjords is amplified through sea-ice damming
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Record-high air temperatures were observed over Greenland in the summer of 2019 and melting of the northern Greenland Ice Sheet was particularly extensive. Here we show, through direct measurements, that near surface ocean temperatures in Sherard Osborn Fjord, northern Greenland, reached 4 °C in August 2019, while in the neighboring Petermann Fjord, they never exceeded 0 °C. We show that this disparity in temperature between the two fjords occurred because thick multi-year sea ice at the entrance of Sherard Osborn Fjord trapped the surface waters inside the fjord, which led to the formation of a warm and fresh surface layer. These results suggest that the presence of multi-year sea ice increases the sensitivity of Greenland fjords abutting the Arctic Ocean to climate warming, with potential consequences for the long-term stability of the northern sector of the Greenland Ice Sheet.
  •  
30.
  • Ware, Colin, et al. (författare)
  • A global geographic grid system for visualizing bathymetry
  • 2020
  • Ingår i: Geoscientific Instrumentation, Methods and Data Systems. - : Copernicus GmbH. - 2193-0856 .- 2193-0864. ; 9:2, s. 375-384
  • Tidskriftsartikel (refereegranskat)abstract
    • A global geographic grid system (Global GGS) is here introduced to support the display of gridded bathymetric data at whatever resolution is available in a visually seamless manner. The Global GGS combines a quadtree metagrid hierarchy with a system of compatible data grids. Metagrid nodes define the boundaries of data grids. Data grids are regular grids of depth values, coarse grids are used to represent sparse data and finer grids are used to represent high-resolution data. Both metagrids and data grids are defined in geographic coordinates to allow broad compatibility with the widest range of geospatial software packages. An important goal of the Global GGS is to support the meshing of adjacent tiles with different resolutions so as to create a seamless surface. This is accomplished by ensuring that abutting data grids either match exactly with respect to their grid-cell size or only differ by powers of 2. The oversampling of geographic data grids, which occurs towards the poles due to the convergence of meridians, is addressed by reducing the number of columns (longitude sampling) by powers of 2 at appropriate lines of latitude. In addition to the specification of the Global GGS, this paper describes a proof-of-concept implementation and some possible variants.
  •  
31.
  • Weidner, Elizabeth, 1990-, et al. (författare)
  • A wideband acoustic method for direct assessment of bubble-mediated methane flux
  • 2019
  • Ingår i: Continental Shelf Research. - : Elsevier BV. - 0278-4343 .- 1873-6955. ; 173, s. 104-115
  • Tidskriftsartikel (refereegranskat)abstract
    • The bubble-mediated transport and eventual fate of methane escaping from the seafloor is of great interest to researchers in many fields. Acoustic systems are frequently used to study gas seep sites, as they provide broad synoptic observations of processes in the water column. However, the visualization and characterization of individual gas bubbles needed for quantitative studies has routinely required the use of optical sensors which offer a limited field of view and require extended amounts of time for deployment and data collection. In this paper, we present an innovative method for studying individual bubbles and estimating gas flux using a calibrated wideband from the Bolin Centre for Climate Research database: http://bolin.su.se/data/.and split-beam echosounder. The extended bandwidth (16 – 26 kHz) affords vertical range resolution of approximately 7.5 cm, allowing for the differentiation of individual bubbles in acoustic data. Split-aperture processing provides phase-angle data used to compensate for transducer beam-pattern effects and to precisely locate bubbles in the transducer field of view. The target strength of individual bubbles is measured and compared to an analytical scattering model to estimate bubble radius, and bubbles are tracked through the water column to estimate rise velocity. The resulting range of bubble radii (0.68–8.40 mm in radius) agrees with those found in other investigations with optical measurements, and the rise velocities trends are consistent with published models. Together, the observations of bubble radius and rise velocity offer a measure of gas flux, requiring nothing more than vessel transit over a seep site, bypassing the need to deploy time-consuming and expensive optical systems.
  •  
32.
  • Weidner, Elizabeth, et al. (författare)
  • Tracking the spatiotemporal variability of the oxic-anoxic interface in the Baltic Sea with broadband acoustics
  • 2020
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 77:7-8, s. 2814-2824
  • Tidskriftsartikel (refereegranskat)abstract
    • Anoxic zones, regions of the water column completely devoid of dissolved oxygen, occur in open oceans and coastal zones worldwide. The Baltic Sea is characterized by strong salinity-driven stratification, maintained by occasional water inflows from the Danish Straights and freshwater input from rivers. Between inflow events, the stratification interface between surface and deep waters hinders mixing and ventilation of deep water; consequently, the bottom waters of large regions of the Baltic are anoxic. The onset of the anoxic zone is closely coincident with the depth of the halocline and, as a result, the interface between oxic and anoxic waters corresponds to a strong impedance contrast. Here, we track acoustic scattering from the impedance contrast utilizing a broadband split-beam echosounder in the Western Gotland Basin and link it to a dissolved oxygen level of 2ml/l using ground truth stations. The broadband acoustic dataset provides the means to remotely observe the spatiotemporal variations in the oxic-anoxic interface, map out the extent of the anoxic zone with high resolution, and identify several mechanisms influencing the vertical distribution of oxygen in the water column. The method described here can be used to study other systems with applications in ongoing oceanographic monitoring programs.
  •  
33.
  • Wölfl, Anne-Cathrin, et al. (författare)
  • Seafloor Mapping - The Challenge of a Truly Global Ocean Bathymetry
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world's oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 - conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33
Typ av publikation
tidskriftsartikel (26)
forskningsöversikt (4)
annan publikation (1)
konferensbidrag (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Nilsson, Johan (7)
Allan, Rob (4)
Becker, Andreas (4)
Benedetti, Angela (4)
Berry, David I. (4)
Bosilovich, Michael ... (4)
visa fler...
Boucher, Olivier (4)
Christiansen, Hanne ... (4)
Christy, John R. (4)
Chung, E. S. (4)
Coldewey-Egbers, Mel ... (4)
Cooper, Owen R. (4)
Davis, Sean M. (4)
De Eyto, Elvira (4)
De Jeu, Richard A.M. (4)
Degasperi, Curtis L. (4)
Degenstein, Doug (4)
Di Girolamo, Larry (4)
Dokulil, Martin T. (4)
Donat, Markus G. (4)
Dorigo, Wouter A. (4)
Phillips, C. (4)
Long, Craig S. (4)
Kaiser, J. W. (4)
Kratz, D. P. (4)
Sawaengphokhai, P. (4)
Beck, H. E. (4)
Carrea, Laura (4)
Dutton, Geoff S. (4)
Elkins, James W. (4)
Fioletov, Vitali E. (4)
Flemming, Johannes (4)
Foster, Michael J. (4)
Frey, Richard A. (4)
Frith, Stacey M. (4)
Froidevaux, Lucien (4)
Gupta, S. K. (4)
Hall, Brad D. (4)
Harris, Ian (4)
Heidinger, Andrew K. (4)
Hurst, Dale F. (4)
Inness, Antje (4)
Isaksen, K. (4)
John, Viju (4)
Jones, Philip D. (4)
Loeb, Norman G. (4)
Loyola, Diego (4)
Marszelewski, Wlodzi ... (4)
Martens, B. (4)
May, Linda (4)
visa färre...
Lärosäte
Stockholms universitet (28)
Göteborgs universitet (4)
Uppsala universitet (4)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy