SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McCloy John S.) srt2:(2021)"

Sökning: WFRF:(McCloy John S.) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McCloy, John S., et al. (författare)
  • Reproduction of melting behavior for vitrified hillforts based on amphibolite, granite, and basalt lithologies
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • European Bronze and Iron Age vitrified hillforts have been known since the 1700s, but archaeological interpretations regarding their function and use are still debated. We carried out a series of experiments to constrain conditions that led to the vitrification of the inner wall rocks in the hillfort at Broborg, Sweden. Potential source rocks were collected locally and heat treated in the laboratory, varying maximum temperature, cooling rate, and starting particle size. Crystalline and amorphous phases were quantified using X-ray diffraction both in situ, during heating and cooling, and ex situ, after heating and quenching. Textures, phases, and glass compositions obtained were compared with those for rock samples from the vitrified part of the wall, as well as with equilibrium crystallization calculations. ‘Dark glass’ and its associated minerals formed from amphibolite or dolerite rocks melted at 1000–1200 °C under reducing atmosphere then slow cooled. ‘Clear glass’ formed from non-equilibrium partial melting of feldspar in granitoid rocks. This study aids archaeological forensic investigation of vitrified hillforts and interpretation of source rock material by mapping mineralogical changes and glass production under various heating conditions.
  •  
2.
  • Nava-Farias, Lorena, et al. (författare)
  • Applying laboratory methods for durability assessment of vitrified material to archaeological samples
  • 2021
  • Ingår i: npj Materials Degradation. - : Springer Nature. - 2397-2106. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laboratory testing used to assess the long-term chemical durability of nuclear waste forms may not be applicable to disposal because the accelerated conditions may not represent disposal conditions. To address this, we examine the corrosion of vitrified archeological materials excavated from the near surface of a ~1500-year old Iron Age Swedish hillfort, Broborg, as an analog for the disposal of vitrified nuclear waste. We compare characterized site samples with corrosion characteristics generated by standard laboratory durability test methods including the product consistency test (PCT), the vapor hydration test (VHT), and the EPA Method 1313 test. Results show that the surficial layer of the Broborg samples resulting from VHT displays some similarities to the morphology of the surficial layer formed over longer timescales in the environment. This work provides improved understanding of long-term glass corrosion behavior in terms of the thickness, morphology, and chemistry of the surficial features that are formed.
  •  
3.
  • Plymale, Andrew E., et al. (författare)
  • Niche Partitioning of Microbial Communities at an Ancient Vitrified Hillfort : Implications for Vitrified Radioactive Waste Disposal
  • 2021
  • Ingår i: Geomicrobiology Journal. - : Taylor & Francis. - 0149-0451 .- 1521-0529. ; 38:1, s. 36-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Because microbes cannot be eliminated from radioactive waste disposal facilities, the consequences of bio-colonization must be understood. At a pre-Viking era vitrified hillfort, Broborg, Sweden, anthropogenic glass has been subjected to bio-colonization for over 1,500 years. Broborg is used as a habitat analogue for disposed radioactive waste glass to inform how microbial processes might influence long-term glass durability. Electron microscopy and DNA sequencing of surficial material from the Broborg vitrified wall, adjacent soil, and general topsoil show that the ancient glass supports a niche microbial community of bacteria, fungi, and protists potentially involved in glass alteration. Communities associated with the vitrified wall are distinct and less diverse than soil communities. The vitrified niche of the wall and adjacent soil are dominated by lichens, lichen-associated microbes, and other epilithic, endolithic, and epigeic organisms. These organisms exhibit potential bio-corrosive properties, including silicate dissolution, extraction of essential elements, and secretion of geochemically reactive organic acids, that could be detrimental to glass durability. However, long-term biofilms can also possess a homeostatic function that could limit glass alteration. This study documents potential impacts that microbial colonization and niche partitioning can have on glass alteration, and subsequent release of radionuclides from a disposal facility for vitrified radioactive waste.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy