SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mergè M.) srt2:(2017)"

Sökning: WFRF:(Mergè M.) > (2017)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munini, R., et al. (författare)
  • Short-term variation in the galactic cosmic ray intensity measured with the PAMELA experiment
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • New results on the galactic cosmic ray (GCR) short-term intensity variation associated with Forbush decrease and co-rotating interaction regions (CIRs) measured by the PAMELA instrument between November 2006 and March 2007 are presented. Most of the past measurements on Forbush decrease events were carried out with neutron monitor detector. This tecnique allows only indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease associated with the December 13th coronal mass ejection (CME) was studied in a wide rigidity range (0.4 - 20 GV) and for different species of GCRs detected directly in space. Using GCR protons, the amplitude and the recovery time of the Forbush decrease were studied for ten rigidity interval with a temporal resolution of one day. For comparison the helium and the electron intensity over time were also studied. The temporal evolution of the helium and proton intensity was found in good agreement while the electrons show, on average, a faster recovery time. This was interpreted as a charge-sign dependence introduced by drift motion experienced by the low rigidity (< 5 GV) GCRs during their propagation through the heliosphere. Moreover a clear 13.5 days cyclical variation was observed in the GCR proton intensity after the Forbush decrease. This phenomena could be interpreted as an effect of prominent structures of compressed plasma in the solar wind, i.e. CIRs, or to the latitudinal gradient due to the crossing of the heliospheric current sheet (HCS). 
  •  
2.
  • Bogomolov, E. A., et al. (författare)
  • Spectra of solar neutrons with energies of ~10–1000 MeV in the PAMELA experiment in the flare events of 2006–2015
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 132-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The first results from measuring the spectra of solar neutrons with energies of ~10–1000 MeV in the solar flares of 2006–2015 observed by the PAMELA international space experiment are presented. The PAMELA neutron detector with 3He counters and a moderator with an area of 0.18 m2 allows us to estimate the flux of solar neutrons during solar flares. Solar neutrons with energies of ~10–1000 MeV likely occurred in 21 out of the 24 analyzed flares of 2006–2015.
  •  
3.
  • Bruno, A., et al. (författare)
  • Geomagnetically trapped, albedo and solar energetic particles : Trajectory analysis and flux reconstruction with PAMELA
  • 2017
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 60:4, s. 788-795
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.
  •  
4.
  • Koldobskiy, S. A., et al. (författare)
  • Solar modulation of cosmic deuteron fluxes in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 151-153
  • Tidskriftsartikel (refereegranskat)abstract
    • The preliminary results from measurements of deuteron fluxes in galactic cosmic rays (GCR) in the vicinity of the Earth in 2006–2009 are presented. The results are obtained by analyzing data from the PAMELA experiment aboard the Resurs DK-1 satellite. High-precision detection instruments provided an opportunity to identify GCR deuterons and measure their spectrum in the energy interval of 90–650MeV/nucleon. Spectra averaged over six-month intervals from the summer of 2006 to the summer of 2009 (the solar activity minimum) are presented. The influence of solar modulation on the observed spectrum is clearly seen in the results.
  •  
5.
  • Mayorov, A. G., et al. (författare)
  • Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data
  • 2017
  • Ingår i: International Conference On Particle Physics And Astrophysics. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • Solar modulation of galactic protons with energies from 50 MeV up to dozens of GeV during July '06 - January '16 studied based on a data of the magnetic spectrometer PAMELA and scintillation spectrometer ARINA. This period is interesting because it covers the end of 23(rd) and current 24(th) cycles of solar activity, including the abnormally long transient period and change of the polarity of solar magnetic field.
  •  
6.
  • Menn, W., et al. (författare)
  • Cosmic-ray lithium and beryllium isotopes in the PAMELA-experiment
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA space experiment was launched on the 15th of June 2006 from the Baikonur cosmodrome. The scientific objectives addressed by the mission are the measurement of the antiprotons and positrons spectra in cosmic rays, the hunt for antinuclei as well as the determination of light nuclei fluxes from hydrogen to oxygen in a wide energy range and with high statistics. The apparatus comprises a time-of-flight system, a magnetic spectrometer (permanent magnet) with an silicon-microstrip tracking system, an imaging calorimeter built from layers of siliconmicrostrip detectors interleaved with plates of tungsten, an anti-coincidence system, a shower tail scintillator-counter and a neutron detector. The instrument in its detector-combination is also capable to identify isotopes, using the rigidity information from the magnetic spectrometer together with the time-of-flight measurement or with the multiple dE/dx measurement in the calorimeter. In this paper details about the analysis method and new results of the isotopic ratios of lithium and beryllium with increased statistics will be presented. 
  •  
7.
  • Mergè, M., et al. (författare)
  • PAMELA measurements of solar energetic particle spectra
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The charged particle acceleration and transport during solar events have been widely studied in the past decades. The satellite-borne PAMELA experiment has been continuously collecting data since 2006. The apparatus is designed to study charged particles in the cosmic radiation. The combination of permanent magnet, silicon micro-strip spectrometer and silicon-tungsten imaging calorimeter, with the redundancy of instrumentation allows very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a well suited instrument for Solar Energetic Particles (SEP) observations. Not only it spans the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of SEP energy spectra, composition and angular distribution. PAMELA has observed many SEP events in solar cycle 24, offering unique opportunity to address several questions on high-energy SEP origin. A preliminary analysis on proton spectra during several events of the 24th solar cycle is presented. 
  •  
8.
  • Mikhailov, V. V., et al. (författare)
  • Modulation of electrons and positrons in 2006–2015 in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 154-156
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched aboard the Resurs DK-1 satellite into a nearpolar circumterrestrial orbit with an altitude of 350–600 km to study fluxes of the particles and antiparticles of cosmic rays in the wide energy range of ~80 MeV to several hundred gigaelectronvolts. The results from observations of temporal variations in electron and positron fluxes in 2006–2015 are presented. The ratio of electron and positron fluxes measured in this time interval reveals a dependence on the rigidity of particles, the solar activity, and the polarity of the solar magnetic field.
  •  
9.
  • Mikhailov, V. V., et al. (författare)
  • Secondary positrons and electrons in near-Earth space in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 203-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of electrons and positrons with energies above ~100 MeV in the near-Earth space are measured with the PAMELA magnetic spectrometer aboard the Resurs DK-1 satellite launched on June 15, 2006, into a quasipolar orbit with an altitude of 350–600 km and an inclination of 70°. Calculating the trajectories of detected electrons and positrons in the magnetosphere of the Earth allows us to determine their origin and isolate particles produced during interaction between cosmic rays and the residual atmosphere. Spatial distributions of albedo, quasitrapped, and trapped (in the radiation belt) positrons and electrons are presented. The ratio of positron and electron fluxes suggests that the fluxes of trapped particles of the radiation belt and quasitrapped secondary particles have different mechanisms of formation.
  •  
10.
  • Munini, R., et al. (författare)
  • Ten years of positron and electron solar modulation measured by the PAMELA experiment
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment was launched on the 15th June 2006 from the Baikonur cosmodrome. Till January 2016 PAMELA has detected the charged component of cosmic-rays (CRs) over a wide energy range. Due to its long flight duration PAMELA represents an ideal detector for cosmic-ray solar modulation studies. Moreover, the capability to measure particles of the same mass with opposite charge allows to investigate the charge-sign dependent solar modulation. The results on the positron and electron intensity variation at Earth over the 23rd solar minimum (July 2006 - January 2009) till the middle of the 24rd solar maximum (December 2015), will be presented. The positron to electron ratio shows a clear time variation interpreted as solar modulation sign-charge dependence introduced by particle drifts. The effect of the polarity reversal of the heliospheric magnetic field, which took place between 2013 and 2014, is also distinctly visible from the PAMELA data. These results provide the first clear indication of how drift effects unfold with time during different phases of the solar activity and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field. 
  •  
11.
  • Adriani, O., et al. (författare)
  • Ten years of PAMELA in space
  • 2017
  • Ingår i: La Rivista del nuovo cimento della Società italiana di fisica. - : Società Italiana di Fisica. - 0393-697X .- 1826-9850. ; 40:10, s. 473-522
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA cosmic-ray detector was launched on June 15th 2006 on board the Russian Resurs-DK1 satellite, and during ten years of nearly continuous data-taking it has observed new interesting features in cosmic rays (CRs). In a decade of operation it has provided plenty of scientific data, covering different issues related to cosmic-ray physics. Its discoveries might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the Galaxy. The antimatter measurements, focus of the experiment, have set strong constraints to the nature of Dark Matter. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) was also pursued. Furthermore, the long-term operation of the instrument had allowed a constant monitoring of the solar activity during its maximum and a detailed and prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA had also measured the radiation environment around the Earth, and it detected for the first time the presence of an antiproton radiation belt surrounding our planet. The operation of Resurs-DK1 was terminated in 2016. In this article we will review the main features of the PAMELA instrument and its constructing phases. The main part of the article will be dedicated to the summary of the most relevant PAMELA results over a decade of observation.
  •  
12.
  • Boezio, M., et al. (författare)
  • The PAMELA experiment : A cosmic ray experiment deep inside the heliosphere
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • It was the 15th of June of 2006 when the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome in Kazakstan. Then, for nearly ten years, PAMELA has been making high-precision measurements of the charged component of the cosmic radiation opening a new era of precision studies in cosmic rays and challenging our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy and in the heliosphere. The study of the time dependence of the various components of the cosmic radiation from the unusual 23rd solar minimum through the maximum of solar cycle 24 clearly shows solar modulation effects as well as charge sign dependence. PAMELA measurement of the energy spectra during solar energetic particle events fills the existing energy gap between the highest energy particles measured in space and the ground-based domain. Finally, by sampling the particle radiation in different regions of the magnetosphere, PAMELA data provide a detailed study of the Earth s magnetosphere. In this highlight paper, PAMELA main results as well as recent progress about solar and heliospheric physics with PAMELA will be presented. 
  •  
13.
  • Galper, A. M., et al. (författare)
  • The PAMELA experiment : A decade of Cosmic Ray Physics in space
  • 2017
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 798:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA detector was launched on June 15 th of 2006 on board the Russian Resurs-DK1 satellite and during ten years of continuous data-taking it has observed very interesting features in cosmic rays, especially in the fluxes of protons, helium and electrons. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have set strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) have also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) has also been pursued. Furthermore, over the years the instrument has allowed a constant monitoring of the solar activity and a prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA has also measured the radiation environment around the Earth, and detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.
  •  
14.
  • Mikhailov, V., et al. (författare)
  • Measurements of electron and positron fluxes below the geomagnetic cutoff by the PAMELA magnetic spectrometer
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • We present a measurements of electron and positron fluxes below the geomagnetic cutoff rigidity in wide energy range from 50 MeV to several GeVs by the PAMELA magnetic spectrometer. The instrument was launched on June 15th 2006 on-board the Resurs-DK satellite on low orbit with 70 degrees inclination and altitude between 350 and 600 km. Features of spatial distributions of secondary electrons and positrons in the near Earth space, including the South Atlantic Anomaly, were investigated in terms of lifetime and geographical origin. The separation in stably trapped, long lifetime quasi-trapped, and short lifetime albedo components was performed on base of back tracing procedure in geomagnetic field. A significant difference in relative abundance of positrons with respect to electrons is seen for the stable trapped and the quasi-trapped populations what pointing out on differences in trapping mechanism of those populations. 
  •  
15.
  • Mikhailov, V. V., et al. (författare)
  • Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA
  • 2017
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 798:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic spectrometer PAMELA was launched onboard a satellite Resurs-DK1 into low-Earth polar orbit with altitude 350-600 km to study cosmic ray antiparticle fluxes in a wide energy range from ∼ 100 MeV to hundreds GeV. This paper presents the results of observations of temporal variations of the positron and electron fluxes in the 2006-2015. The ratio of the positron and electron fluxes below 2 GV shows sharp increasing since 2014 due to changing of the polarity of the solar magnetic field.
  •  
16.
  • Panico, B., et al. (författare)
  • Time dependence of the helium flux measured by pamela
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The last solar cycle has presented a peculiarly long quiet phase with consequent minimum modulation conditions for cosmic rays. The proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. These studies allow to obtain a more complete description of the cosmic radiation. In this picture the time dependence of the helium spectrum become very important to constrain parameters of the actual solar modulation model. The crucial point for this analysis is the selection of a dataset of helium events which ensure high statistics with a very low contamination. In this paper the definition of the selection criteria for helium events with data taken from July 2006 to June 2014 by PAMELA experiment is reported. 
  •  
17.
  • Panico, B., et al. (författare)
  • Time dependence of the proton and helium flux measured by PAMELA
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation, but, near Earth, cosmic rays are significantly affected by the solar magnetic field which changes over time. The time dependence of proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, that is a ballooon-borne experiment collecting data since 15 June 2006. These studies allowed to obtain a more complete description of the cosmic radiation, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. In this talk the study of the time dependence of the cosmic-ray protons and helium nuclei from the unusual 23rd solar minimum through the following period of solar maximum activity is presented.  
  •  
18.
  • Ricci, M., et al. (författare)
  • Effect of the Jupiter magnetosphere on the cosmic ray protons measured with the PAMELA experiment
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The very intense Jovian magnetic field produces a magnetosphere where high-energy charged particles are trapped, allowing the possibility for acceleration mechanism that could inject those particles in the open space. In the last decades, accelerated electrons from the Jupiter magnetosphere have been detected and studied in the interplanetary space.This work investigated whether the proton data obtained by the PAMELA space-borne detector between July 9th, 2006 to August 31th, 2014 shows signatures that arise from Jupiter. In this proceeding the basis of the analysis of cosmic ray protons by PAMELA are described and results will be shown at the conference. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy