SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mergè M.) srt2:(2018)"

Sökning: WFRF:(Mergè M.) > (2018)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munini, R., et al. (författare)
  • Evidence of Energy and Charge Sign Dependence of the Recovery Time for the 2006 December Forbush Event Measured by the PAMELA Experiment
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 853:1
  • Tidskriftsartikel (refereegranskat)abstract
    • New results on the short-term galactic cosmic-ray (GCR) intensity variation (Forbish decrease) in 2006 December measured by the PAMELA instrument are presented. Forbush decreases are sudden suppressions of the GCR intensities, which are associated with the passage of interplanetary transients such as shocks and interplanetary coronal mass ejections (ICMEs). Most of the past measurements of this phenomenon were carried out with groundbased detectors such as neutron monitors or muon telescopes. These techniques allow only the indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease, commencing on 2006 December 14 and following a CME at the Sun on 2006 December 13, was studied in a wide rigidity range (0.4-20 GV) and for different species of GCRs detected directly in space. The daily averaged GCR proton intensity was used to investigate the rigidity dependence of the amplitude and the recovery time of the Forbush decrease. Additionally, for the first time, the temporal variations in the helium and electron intensities during a Forbush decrease were studied. Interestingly, the temporal evolutions of the helium and proton intensities during the Forbush decrease were found to be in good agreement, while the low rigidity electrons (<2 GV) displayed a faster recovery. This difference in the electron recovery is interpreted as a charge sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere.
  •  
2.
  • Martucci, M., et al. (författare)
  • Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 854:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise measurements of the time-dependent intensity of the low-energy (<50 GeV) galactic cosmic rays (GCRs) are fundamental to test and improve the models that describe their propagation inside the heliosphere. In particular, data spanning different solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08-50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.
  •  
3.
  • Mikhailov, V. V., et al. (författare)
  • Trapped Positrons and Electrons in the Inner Radiation Belt According to Data of the PAMELA Experiment
  • 2018
  • Ingår i: Physics of Atomic Nuclei. - : PLEIADES PUBLISHING INC. - 1063-7788 .- 1562-692X. ; 81:4, s. 515-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of secondary-electron and secondary-positron fluxes below the geomagnetic cutoff in near-Earth space were performed by means of the PAMELA magnetic spectrometer installed on board the Resurs-DK1 satellite launched on June 15, 2006, in an elliptical orbit of inclination 70A degrees and altitude 350 to 600 km. This spectrometer permits measuring the fluxes of electrons and positrons over a wide energy range, as well as determining their spatial distributions to a precision of about 2A degrees. A calculation of particle trajectories in the geomagnetic field makes it possible to separate electrons and positrons originating from cosmic-ray interactions in the Earth's magnetosphere. The spatial distributions of quasitrapped, trapped, and short-lived albedo positrons and electrons of energy above 70 MeV in the radiation belt were analyzed. The ratio of the electron-to-positron fluxes and the energy spectra of the electrons and positrons in question are indicative of different productionmechanisms for stably trapped and quasitrapped secondary particles.
  •  
4.
  • Adriani, O., et al. (författare)
  • Unexpected Cyclic Behavior in Cosmic-Ray Protons Observed by PAMELA at 1 au
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 852:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Protons detected by the PAMELA experiment in the period 2006-2014 have been analyzed in the energy range between 0.40 and 50 GV to explore possible periodicities besides the well known solar undecennial modulation. An unexpected clear and regular feature has been found at rigidities below 15 GV, with a quasi-periodicity of similar to 450 days. A possible Jovian origin of this periodicity has been investigated in different ways. The results seem to favor a small but not negligible contribution to cosmic rays from the Jovian magnetosphere, even if other explanations cannot be excluded.
  •  
5.
  • Menn, W., et al. (författare)
  • Lithium and Beryllium Isotopes with the PAMELA Experiment
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 862:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic ray (CR) lithium and beryllium (Li-6, Li-7, Be-7, Be-9, Be-10) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DKJ satellite on 2006 June 15. The rare lithium and beryllium isotopes in CRs are believed to originate mainly from the interaction of high-energy carbon, nitrogen, and oxygen nuclei with the interstellar medium (ISM), but also on "tertiary" interactions in the ISM (i.e., produced by further fragmentation of secondary beryllium and boron). In this paper, the isotopic ratios Li-7/Li-6 and Be-7/(Be-9 + Be-10), measured between 150 and 1100 MeV n(-1) using two different detector systems from 2006 July to 2014 September, will be presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy