SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Millar T.J.) srt2:(2015-2019)"

Search: WFRF:(Millar T.J.) > (2015-2019)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bryant, J. M., et al. (author)
  • Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium
  • 2016
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6313, s. 751-757
  • Journal article (peer-reviewed)abstract
    • Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole-genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.
  •  
2.
  • Danilovich, T., et al. (author)
  • Sulphur-bearing molecules in AGB stars
  • 2017
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 606
  • Journal article (peer-reviewed)abstract
    • Context. Sulphur is a relatively abundant element in the local Galaxy that is known to form a variety of molecules in the circumstellar envelopes of AGB stars. The abundances of these molecules vary based on the chemical types and mass-loss rates of AGB stars. Aims. Through a survey of (sub-) millimetre emission lines of various sulphur-bearing molecules, we aim to determine which molecules are the primary carriers of sulphur in different types of AGB stars. In this paper, the first in a series, we investigate the occurrence of H2S in AGB circumstellar envelopes and determine its abundance, where possible. Methods. We surveyed 20 AGB stars with a range of mass-loss rates and different chemical types using the Atacama Pathfinder Experiment (APEX) telescope to search for rotational transition lines of five key sulphur-bearing molecules: CS, SiS, SO, SO2, and H2S. Here we present our results for H2S, including detections, non-detections, and detailed radiative transfer modelling of the detected lines. We compared results based on various descriptions of the molecular excitation of H2S and different abundance distributions, including Gaussian abundances, where possible, and two different abundance distributions derived from chemical modelling results. Results. We detected H2S towards five AGB stars, all of which have high mass-loss rates of. M >= 5 x 10(-6) M-circle dot yr(-1) and are oxygen rich. H2S was not detected towards the carbon or S-type stars that fall in a similar mass-loss range. For the stars in our sample with detections, we find peak o-H2S abundances relative to H-2 between 4 x 10(-7) and 2.5 x 10(-5). Conclusions. Overall, we conclude that H2S can play a significant role in oxygen-rich AGB stars with higher mass-loss rates, but is unlikely to play a key role in stars of other chemical types or in lower mass-loss rate oxygen-rich stars. For two sources, V1300 Aql and GX Mon, H2S is most likely the dominant sulphur-bearing molecule in the circumstellar envelope.
  •  
3.
  • Danilovich, Taissa, 1987, et al. (author)
  • Sulphur-bearing molecules in AGB stars. Part I. The occurrence of hydrogen sulphide
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 606
  • Journal article (peer-reviewed)abstract
    • Context. Sulphur is a relatively abundant element in the local Galaxy that is known to form a variety of molecules in the circumstellar envelopes of AGB stars. The abundances of these molecules vary based on the chemical types and mass-loss rates of AGB stars. Aims. Through a survey of (sub-) millimetre emission lines of various sulphur-bearing molecules, we aim to determine which molecules are the primary carriers of sulphur in different types of AGB stars. In this paper, the first in a series, we investigate the occurrence of H2S in AGB circumstellar envelopes and determine its abundance, where possible. Methods. We surveyed 20 AGB stars with a range of mass-loss rates and different chemical types using the Atacama Pathfinder Experiment (APEX) telescope to search for rotational transition lines of five key sulphur-bearing molecules: CS, SiS, SO, SO2, and H2S. Here we present our results for H2S, including detections, non-detections, and detailed radiative transfer modelling of the detected lines. We compared results based on various descriptions of the molecular excitation of H2S and different abundance distributions, including Gaussian abundances, where possible, and two different abundance distributions derived from chemical modelling results. Results. We detected H2S towards five AGB stars, all of which have high mass-loss rates of. M >= 5 x 10(-6) M-circle dot yr(-1) and are oxygen rich. H2S was not detected towards the carbon or S-type stars that fall in a similar mass-loss range. For the stars in our sample with detections, we find peak o-H2S abundances relative to H-2 between 4 x 10(-7) and 2.5 x 10(-5). Conclusions. Overall, we conclude that H2S can play a significant role in oxygen-rich AGB stars with higher mass-loss rates, but is unlikely to play a key role in stars of other chemical types or in lower mass-loss rate oxygen-rich stars. For two sources, V1300 Aql and GX Mon, H2S is most likely the dominant sulphur-bearing molecule in the circumstellar envelope.
  •  
4.
  • Decin, L., et al. (author)
  • ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592:A76
  • Journal article (peer-reviewed)abstract
    • Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims. We aim to study the inner-wind structure (R
  •  
5.
  • Dubernet, M. L., et al. (author)
  • The virtual atomic and molecular data centre (VAMDC) consortium
  • 2016
  • In: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 49:7
  • Journal article (peer-reviewed)abstract
    • The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
  •  
6.
  • Saberi, Maryam, 1988, et al. (author)
  • The Impact of UV Radiation on Circumstellar Chemistry
  • 2018
  • In: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 14, s. 191-195
  • Conference paper (peer-reviewed)abstract
    • UV radiation plays a critical role in the chemistry of circumstellar envelopes (CSEs) around evolved stars on the asymptotic giant branch (AGB). However, the effects of all potential sources of UV radiation have not been included in models. We present preliminary results of adding an internal source of UV to the CSE chemistry and predict large enhancements of atomic and ionic species arising from photo-destruction of parent species. Observations of atomic carbon towards the UV-bright AGB star o Cet are consistent with the modelling. In addition, we calculate the precise depth dependence of the CO photodissociation rate in an expanding CSE. We incorporate this within a chemical network active in the outflows of AGB stars, which includes 933 species and 15182 reactions. Our results show that the CO envelope size is about 30% smaller at half abundance than the most commonly used radius reported by Mamon et al. (1988).
  •  
7.
  • Van De Sande, M., et al. (author)
  • Unraveling The Dust Formation Process In R DOR
  • 2015
  • In: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759819072 ; 71-72, s. 255-257
  • Conference paper (peer-reviewed)abstract
    • Using both dynamical and chemical modelling, we derive an accurate abundance profile for the molecule SiO in the stellar wind of R Dor, an O-rich AGB star. SiO plays a key role in the dust formation process in O-rich AGB stars. This method will be applied to additional molecules, with the aim to achieve a detailed overview of the molecular abundance pattern in the wind of R Dor.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view