SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mowlavi Nami) srt2:(2024)"

Sökning: WFRF:(Mowlavi Nami) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anderson, Richard I., et al. (författare)
  • VELOcities of CEpheids (VELOCE) : I. High-precision radial velocities of Cepheids
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first data release of VELOcities of CEpheids (VELOCE), dedicated to measuring the high-precision radial velocities (RVs) of Galactic classical Cepheids (henceforth, Cepheids). The first data release (VELOCE DR1) comprises 18 225 RV measurements of 258 bona fide classical Cepheids on both hemispheres collected mainly between 2010 and 2022, along with 1161 observations of 164 stars, most of which had previously been misclassified as Cepheids. The median per-observation RV uncertainty for Cepheids is 0.037 km s-1 and reaches 2 m s-1 for the brightest stars observed with Coralie. Non-variable standard stars were used to characterize RV zero-point stability and to provide a base for future cross-calibrations. We determined zero-point differences between VELOCE and 31 literature data sets using template fitting, which we also used to investigate linear period changes of 146 Cepheids. In total, 76 spectroscopic binary Cepheids and 14 candidate binary Cepheids were identified using VELOCE data alone, which are investigated in detail in a companion Paper (VELOCE II). VELOCE DR1 provides a number of new insights into the pulsational variability of Cepheids, most importantly: a) the most detailed description of the Hertzsprung progression based on RVs to date; b) the identification of double-peaked bumps in the pulsation curve; and c) clear evidence that virtually all Cepheids feature spectroscopic variability signals that lead to modulated RV variability at the level of tens to hundreds of m s-1 and that cannot be satisfactorily modeled using single-periodic Fourier series. We identified 36 stars exhibiting such modulated variability, of which 4 also exhibit orbital motion. Linear radius variations depend strongly on pulsation period and a steep increase in slope of the ΔR/p vs. log P-relation is found near 10 days. This effect, combined with significant RV amplitude differences at fixed period, challenges the existence of a tight relation between Baade-Wesselink projection factors and pulsation periods. We investigated the accuracy of RV time series measurements, Uγ, and RV amplitudes published by Gaia's third data release (Gaia DR3) and determined an offset of 0.65 ± 0.11 km s-1 relative to VELOCE. Whenever possible, we recommend adopting a single set of template correlation parameters for distinct classes of large-amplitude variable stars to avoid systematic offsets in Uγ among stars belonging to the same class. The peak-to-peak amplitudes of Gaia RVs exhibit significant (16%) dispersion. Potential differences of RV amplitudes require further inspection, notably in the context of projection factor calibration.
  •  
2.
  • Pawlak, Michał, et al. (författare)
  • Investigating the long secondary period phenomenon with the ASAS-SN and Gaia data
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim of this work is to create a complete list of sources exhibiting a long secondary period (LSP) in the ASAS-SN catalog of variable stars, and analyze the properties of this sample compared to other long period variables without an LSP. Methods. We used the period-amplitude diagram to identify the 55 572 stars showing an LSP, corresponding to 27% of the pulsating red giants in the catalog. We used astrometric data from Gaia DR3 and spectroscopic data provided by the APOGEE, GALAH, and RAVE surveys to investigate the statistical properties of the sample. Results. We find that stars displaying an LSP have a spatial distribution that is more dispersed than that of the non-LSP giants, suggesting that they belong to an older population. Spectroscopically derived ages seem to confirm this. The stars with an LSP also appear to be different in terms of the C/O ratio from their non-LSP counterparts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy