SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mudring Anja Verena) srt2:(2019)"

Sökning: WFRF:(Mudring Anja Verena) > (2019)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Luminescence properties of a family of lanthanide metal-organic frameworks
  • 2019
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 279, s. 400-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Two isostructural series of lanthanide metal-organic frameworks denoted as SUMOF-7II (Ln) and SUMOF-7IIB (Ln) (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) were synthesized using4,4',4 ''-(pyridine-2,4,6-triyl)tris(benzoic acid) (H(3)L2) and a mixture of H(3)L2 and 4,4',4 ''-(benzene-1,3,5-triyl)tris(benzoic acid) (H3BTB) as linkers, respectively. Both series were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis (TGA), and photoluminescence spectroscopy. Photoluminescence measurements show that Eu-MOFs demonstrate a red emission while Pr- and Nd-MOFs display an emission in the near-infrared (NIR) range. On the other hand, La-, Ce-, Sm- and Gd-MOFs exhibit only a ligand-centered emission. The average luminescence lifetimes in the SUMOF-7IIB series are 1.3-1.4-fold longer than the corresponding ones in the SUMOF-7II series. SUMOF-7IIs show a good photo- and thermal stability. Altogether, the properties of SUMOF-7II and SUMOF-7IIB render them promising materials for applications including sensing, biosensing, and telecommunications.
  •  
2.
  • Celania, Chris, et al. (författare)
  • Structures, properties, and potential applications of rare earth-noble metal tellurides
  • 2019
  • Ingår i: Journal of Solid State Chemistry. - : Elsevier BV. - 0022-4596 .- 1095-726X. ; 274, s. 243-258
  • Tidskriftsartikel (refereegranskat)abstract
    • As many nations continue to develop and industrialize, the global energy demands are rising rapidly. With the threat of climate change disaster looming, the search for sustainable, green energy has become of higher priority. Thermoelectric materials add an important facet to the mosaic of future energy plans by allowing the scavenging of (low-quality waste) heat created through other processes and their transformation back into useful electrical energy. Thermoelectrics (similar to other green energy sources like solar cells) have struggled to reach high enough efficiencies to allow their cost-effective widespread implementation. Thus, the search for new thermoelectric materials has gained momentum. This review covers the growing family of rare earth metal (R: Sc, Y, and La-Lu)-noble metal (M: Cu, Ag, Au, Pd and Pt)-tellurides which are an interesting group of materials in the discussed context. Rare earth metal -noble metal tellurides constitute an increasing family of structures, numbering nearly forty unique structure types and including quaternary and quinary compounds. Structures include 1D channel structures, 2D layered slab structures, and complex 3D networks. R-M-Te compounds provide a wide variety of p-type semiconducting materials to choose from. The effectiveness of these structures as thermoelectric materials range in utility, with most showing maximum performance (figure of merit, zT - see below) values in the mid to high temperature ranges. To date, this culminates in the highest zT for this family with TbCuTe2, zT = 1.0 at 750 K, which still has potential for optimization. Albeit most observed compounds have been structurally quite well characterized, for many a thorough investigation of their physical properties, be it transport or magnetism is lacking. This work strives to combine, analyze, and at times untangle the variety of structures and properties reported across the breadth of research on this family.
  •  
3.
  • Chand, Deepak, et al. (författare)
  • Alternative to the Popular Imidazolium Ionic Liquids : 1,2,4-Triazolium Ionic Liquids with Enhanced Thermal and Chemical Stability
  • 2019
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 7:19, s. 15995-16006
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct quaternization of 1-methyl-1,2,4-triazole with n-alkyl methanesulfonates (alkyl = butyl, octyl, dodecyl) showed to be an atom-economic, convenient, mild, solvent- and halide-free way to obtain 1,2,4-triazolium methanesulfonate ionic liquids in high purity and yield. Subsequent metathesis with lithium bis(trifluoromethanesulfonyl)amide (LiTf2N) allows for a much desired, easy access to halide-free, bis(trifluoromethanesulfonyl)amide ionic liquids. Differential scanning calorimetry confirms that all investigated compounds qualify as ionic liquids (ILs). Moreover, it reveals for 1-methyl-4-n-dodecyl-1,2,4-triazolium methanesulfonate a rather complex thermal behavior involving formation of mesophases. Indeed, polarizing optical microscopy shows oily streaky textures that are characteristic for smectic liquid crystalline phases. Single-crystal X-ray diffraction structure analysis confirms formation of a layered structure. All compounds are photoluminescent. The color of fluorescence at room temperature can be tuned from blue to orange through the length of the alkyl side chain of the cation, the aromatic interactions between the cations, and the anion nature. In addition, at low temperatures (77 K) a close to white phosphorescence with average lifetimes in the millisecond time range can be observed for 1-methyl-4-n-butyl-triazolium methanesulfonate and all of the studied bis(trifluoromethanesulfonyl)amide ILs. All ILs show an appreciable liquidus range and thermal (up to 260-350 degrees C) and electrochemical stability. The presented set of ILs overcomes the sometimes problematic acidity and low stability of imidazolium ILs in basic environment and can be obtained easily in high purity without halide contamination. Overcoming two shortcomings of classical imidazolium ILs, they may be good alternatives for a number of applications and even enabling new ones.
  •  
4.
  • Liu, J., et al. (författare)
  • Anomalous effects of Sc substitution and processing on magnetism and structure of (Gd1-xScx)(5)Ge-4
  • 2019
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 474, s. 482-492
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic arrest observed in the parent Gd5Ge4 gradually vanishes when a small fraction (x = 0.025, 0.05 and 0.10) of Gd is replaced by Sc in (Gd1-xScx)(5)Ge-4, and the magnetic ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM). A first order phase transition coupled with the FM-AFM transition occurs at T-C = 41 K for x = 0.05 and at T-C = 53 K for x = 0.10 during heating in applied magnetic field of 1 kOe, and the thermal hysteresis is near 10 K. The first-order magnetic transition is coupled with the structural Sm5Ge4-type to Gd5Si4-type transformation. The magnetization measured as a function of applied magnetic field shows sharp metamagnetic-like behavior. At the same time, the AFM to paramagnetic transition in (Gd1-xScx)(5)Ge-4 with x = 0.10, is uncharacteristically broad indicating development of strong short-range AFM correlations above the Ned temperature. Comparison of the magnetization data of bulk, powdered, and metal-varnish composite samples of (Gd0.95Sc0.05)(5)Ge-4 shows that mechanical grinding and fabrication of a composite have little effect on the temperature of the first-order transformation, but short-range ordering and AFM/FM ratio below T-C are surprisingly strongly affected.
  •  
5.
  • Provino, Alessia, et al. (författare)
  • Stability, Crystal Chemistry, and Magnetism of U2+xN21-xB6 and Nb3-yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2-zNbzNi21B6 and U delta Nb3-delta Ni20B6 Systems
  • 2019
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 58:22, s. 15045-15059
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the U-Ni-B and Nb-Ni-B systems to search for possible new heavy fermion compounds and superconducting materials. The formation, crystal chemistry, and physical properties of U2Ni21B6 and Nb3-yNi20+yB6 [ternary derivatives of the cubic Cr23C6-type (cF116, Fm3m)] have been studied; the formation of the hypothetical U3Ni20B6 and Nb2Ni21B6 has been disproved. U2Ni21B6 [a = 10.6701(2) angstrom] crystallizes in the ordered W2Cr21C6-type, whereas Nb3-yNi20+yB6 [a = 10.5842(1) angstrom] adopts the Mg3Ni20B6-type. Ni in U2Ni21B6 can be substituted by U, leading to the solid solution U2-xNi21+yB6 (0 <= x <= 0.3); oppositely, Nb in Nb3Ni20B6 is partially replaced by Ni, forming the solution Nb3-yNi20+yB6 (0 <= y <= 0.5), none of them reaching the limit corresponding to the hypothetically ordered U3Ni20B6 and Nb2Ni21B6. These results prompted us to investigate quaternary compounds U2-zNbzNi21B6 and U6Nb3-delta Ni20B6: strong competition in the occupancy of the 4a and 8c sites by U, Nb, and Ni atoms has been observed, with the 4a site occupied by U/Ni atoms only and the 8c site filled by U/Nb atoms only. U2Ni21B6, U2.3Ni20.7B6, and Nb3Ni20B6 are Pauli paramagnets. Interestingly, Nb2.5Ni20.5B6 shows ferromagnetism with T-c approximate to 11 K; the Curie-Weiss fit gives an effective magnetic moment of 2.78 mu(B)/Ni, suggesting that all Ni atoms in the formula unit contribute to the total magnetic moment. The M(H) data at 2 K further corroborate the ferromagnetic behavior with a saturation moment of 10 mu(B)/fu (approximate to 0.49 mu(B)/Ni). The magnetic moment of Ni at the 4a site induces a moment in all of the Ni atoms of the whole unit cell (32f and 48h sites), with all atoms ordering ferromagnetically at 11 K. Density functional theory (DFT) shows that the formation of U2Ni21B6 and Nb3Ni20B6 is energetically preferred. The various electronic states generating ferromagnetism on Nb2.5Ni20.5B6 and Pauli paramagnetism on U2Ni21B6 and Nb3Ni20B6 have been identified.
  •  
6.
  • Sangeetha, N. S., et al. (författare)
  • Helical antiferromagnetic ordering in EuNi1.95As2 single crystals
  • 2019
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 100:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eu(+2 )spins-7/2 in EuNi2As2 with the body-centered tetragonal ThCr2Si2 structure order antiferromagnetically below the Ned temperature T-N = 15 K into a helical antiferromagnetic (AFM) structure with the helix axis aligned along the tetragonal c axis and the Eu ordered moments aligned ferromagnetically within the ab plane as previously reported from neutron diffraction measurements [T. Jin et al., Phys. Rev. B 99, 014425 (2019)]. Here we study the crystallographic, magnetic, thermal, and electronic transport properties of Bi flux grown single crystals using single-crystal x-ray diffraction, anisotropic magnetic susceptibility chi, isothermal magnetization M, heat capacity C-p, and electrical resistivity rho measurements versus applied magnetic field H and temperature T. Vacancies are found on the Ni sites corresponding to the composition EuNi1.95(1)As2. A good fit of the rho(T) data by the Bloch-Grijneisen theory for metals was obtained. The chi(ab )(T) data below T-N are fitted well by molecular field theory (MFT), and the helix turn angle kd and the Eu-Eu Heisenberg exchange constants are extracted from the fit parameters. The kd value is in good agreement with the neutron-diffraction result. The magnetic contribution to the zero-field heat capacity below T-N is also fitted by MFT. The isothermal in-plane magnetization M-ab exhibits two metamagnetic transitions versus H, whereas M-c(T = 2 K) is nearly linear up to H = 14 T, both behaviors being consistent with MFT. The M-c(H, T), rho(H-c, T ), and C-p(H-c, T ) data yielded aH(c)-T phase diagram separating the AFM and paramagnetic phases in good agreement with MFT. Anisotropic chi(T) literature data for the ThCr2Si2-type helical antiferromagnet EuRh2As2 were also fitted well by MFT. A comparison is made between the crystallographic and magnetic properties of ThCr2Si2-type EuM(2)Pn(2) compounds with M = Fe, Co, Ni, Cu, or Rh, and Pn = P or As, where only ferromagnetic and c-axis helical AFM structures are found.
  •  
7.
  • Sangeetha, N. S., et al. (författare)
  • Non-Fermi-liquid types of behavior associated with a magnetic quantum critical point in Sr(Co1-xNix)(2)As-2 single crystals
  • 2019
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 100:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The compound SrCo2As2 with the body-centered tetragonal ThCr2Si2 structure is known to remain paramagnetic down to a temperature T = 0.05 K, but inelastic neutron scattering studies have shown that both ferromagnetic (FM) and antiferromagnetic (AFM) fluctuations occur in single crystals. Thus it is of interest to study how the magnetism evolves on doping SrCo2As2. Previous work on polycrystalline samples of Sr(Co1-xNix)(2)As-2 indicated the development of AFM order for 0 < x less than or similar to 0.3. Here we studied single crystals of Sr(Co1-xNix)(2)As-2 for 0 < x <= 1 and confirmed the occurrence of AFM order which we deduce to have a c-axis helix structure. We also find evidence for an unusual composition-induced magnetic quantum critical point at x approximate to 0.3 where non-Fermi-liquid types of behavior were revealed by heat capacity and electrical resisitivity measurements at low T. Electron-doped Sr (Co1-xNix)(2)As-2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD) at room temperature, and magnetic susceptibility chi (H, T), isothermal magnetization M(H, T), heat capacity C-p (H, T), and electrical resistivity rho(H, T) measurements versus applied magnetic field H and T. The XRD studies show that the system undergoes a continuous structural crossover from the uncollapsed-tetragonal (ucT) structure to the collapsed tetragonal (cT) structure with increasing Ni doping. The chi (T) data show that SrCo2As2 exhibits an AFM ground state almost immediately upon Ni doping on the Co site. Ab initio electronic-structure calculations for x = 0 and 0.15 indicate that a flat band with a peak in the density of states just above the Fermi energy is responsible for this initial magnetic-ordering behavior on Ni doping. The AFM ordering is observed in the range 0.013 <= x <= 0.25 with the ordered moments aligned in the ab plane and with a maximum ordering temperature T-N = 26.5 K at x = 0.10. The Curie-Weiss-like T dependence of chi in the paramagnetic (PM) state indicates dominant FM interactions. The behavior of the anisotropic susceptibilities below T-N suggests a planar helical magnetic ground state with a composition-dependent pitch based on a local-moment molecular-field-theory model, with FM interactions in the ab plane and weaker AFM interactions along the helix c axis. However, the small ordered (saturation) moments similar to 0.1 mu(B) per transition metal atom, where mu(B) is the Bohr magneton, and the values of the Rhodes-Wohlfarth ratio indicate that the magnetism is itinerant. The high-field M(H) isotherms and the low-field chi(-1) (T > T-N) data were successfully analyzed within the framework of Takahashi's theory of FM spin fluctuations. The C-p (T) at low T exhibits Fermi-liquid behavior for 0 <= x <= 0.15, whereas an evolution to a logarithmic non-Fermi-liquid (NFL) behavior is found for x = 0.2 to 0.3. The logarithmic dependence is suppressed in an applied magnetic field. The low-T rho(H = 0, T) data show a T-2 dependence for 0 <= x <= 0.20 and a power-law dependence rho(H = 0, T) = rho(0) + AT(n) with n < 2 for x = 0.20 and 0.30. The exponent n shows a notable field dependence, suggesting both doping- and magnetic-field-tuned quantum critical phenomena. These low-T NFL types of behavior observed in the C-p and rho measurements are most evident near the quantum critical concentration x approximate to 0.3 at which a T = 0 composition-induced transition from the AFM phase to the PM phase occurs.
  •  
8.
  • Smetana, Volodymyr, et al. (författare)
  • Active-Transition-Metal Tellurides : Through Crystal Structures to Physical Properties
  • 2019
  • Ingår i: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 19:9, s. 5429-5440
  • Forskningsöversikt (refereegranskat)abstract
    • Materials showing thermoelectric properties known as thermoelectrics can reversibly convert a temperature gradient into electricity. Since the vast majority of energy we use comes from thermal processes or creates thermal energy as waste energy, the search for materials able to efficiently convert thermal energy is of extreme importance. The discovery of a new, highly efficient thermoelectric material is complicated due to the special requirements imposed on the combination of electrical and thermal transport properties. Metal chalcogenides (MCs) have attracted significant attention as high performance thermoelectric materials. Their subgroup, active-transition-metal chalcogenides, shows structural and compositional diversity, including a wide occurrence of low-dimensional structural motifs, which opens up a fruitful area for explorations. This area has been preliminarily explored from both structural and functional viewpoints revealing very promising directions and unique compounds. Nevertheless, systematic investigations on transport properties are still missing. Available data suggests the presence of low bandgap semiconductors satisfying at least one of the conditions for a good thermoelectric, whereas the potential for structural and electronic variation in the form of active metal doping and substitution leaves a decent chance to uncover a candidate with acceptably low thermal conductivity and subsequently high thermoelectric performance.
  •  
9.
  • Tang, Si-Fu, et al. (författare)
  • Highly Luminescent Ionic Liquids Based on Complex Lanthanide Saccharinates
  • 2019
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 58:17, s. 11569-11578
  • Tidskriftsartikel (refereegranskat)abstract
    • Four strongly luminescent ionic liquids with complex lanthanide saccharinate anions, [C(4)mim](3)[Eu-Sac)(6)(H2O)(2)] (1), {C(4)mpy}(5){[Ln-(Sac)(6)(H2O)(2)][Ln-(Sac)(5)(H2O)(3)]}{(H2O)(2)(CH3CN)(2)} (Ln = Sm for 2a; Ln = Eu for 2b), and [C(4)mpy](3)[Eu(Sac)(6)][CH3CN] (3) (C(4)mim = 1-butyl-3-methylimidazolium; C(4)mpy = N-butyl-4-methylpyridinium; Sac = saccharinate), have been obtained by reacting the ionic liquids 1-butyl-3-methylimidazolium saccharinate, [C(4)mim] [Sac], and N-butyl-4-methylpyridinium saccharinate, [C(4)mpy] [Sac], with the respective lanthanide saccharinates. Single-crystal X-ray diffraction analyses reveal the respective lanthanide center to be six- or eight-coordinated by five or six saccharinate anions and two or three aqua ligands in the cases of 1 and 2 when lanthanide saccharinated hydrate was employed as the starting material. Coordination of water to the lanthanide can be avoided when using the anhydrous lanthanide saccharinate as shown by the structure of 3. Using a co-solvent, acetonitrile, to facilitate the reaction led to incorporation of solvent molecules into the crystal structure of the final materials (2 and 3). Differential scanning calorimetry analyses reveal that 1 is an ionic liquid whereas 2 and 3 are low-temperature molten salts. The three europium(III)-containing compounds (1, 2b, and 3) all show characteristic intense red emissions of Eu(III) upon excitation into levels of the saccharinate ligands (321 nm) or Eu(III) (393 nm). At room temperature, the decay times of 1 and 2b are all similar to 0.5 ms, whereas the decay time of 3 amounts to 3.85 ms due to removal of aqua ligands in the first coordination sphere; accordingly, the quantum efficiencies of 1, 2b, and 3 were determined to be 15.9%, 22.95%, and 57.75%, respectively. The CIE chromaticity coordinates for all Eu compounds are in the red region and approach the NTSC standard CIE values when the temperature is increased. Sm(III)-containing compound 2a shows characteristic Sm(III) emission peaks. As expected, the CIE coordinates of samarium compound 2a fall in the orangered region.
  •  
10.
  • Tessitore, Gabriella, et al. (författare)
  • Upconversion luminescence in sub-10 nm b-NaGdF4 : Yb3+,Er3+ nanoparticles
  • 2019
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 9:60, s. 34784-34792
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-10 nm beta-NaGdF4:18% Yb3+,2% Er3+ nanoparticles were synthesized in ethylene glycol and various ionic liquids under microwave heating. The products were characterized by powder X-ray diffraction, electron microscopy, and upconversion (UC) luminescence spectroscopy. After Yb3+ excitation at 970 nm, Er3+ ions are excited by energy transfer upconversion and show the typical green and red emission bands. The UC luminescence intensity was optimized with respect to reactant concentrations, solvents, and reaction temperature and time. The strongest UC emission was achieved for sub-20 nm core-shell nanoparticles which were obtained in the ionic liquid diallyldimethylammonium bis(trifluoromethanesulfonyl)amide from a two-step synthesis without intermediate separation. Strictly anhydrous reaction conditions, a high fluoride/rare earth ion ratio, and a core-shell structure are important parameters to obtain highly luminescent nanoparticles. These conditions reduce non-radiative losses due to defects and high energy acceptor modes of surface ligands. A low power excitation of the core-shell particles by 70 mW at 970 nm results in an impressive UC emission intensity of 0.12% compared to the bulk sample.
  •  
11.
  • Wang, Guangmei, et al. (författare)
  • Ionothermal Synthesis Enables Access to 3D Open Framework Manganese Phosphates Containing Extra-Large 18-Ring Channels
  • 2019
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 31:18, s. 7329-7339
  • Tidskriftsartikel (refereegranskat)abstract
    • An ionothermal synthesis study of transition metal phosphates using the ionic liquid 1-butyl-4-methylpyridinium hexafluorophosphate [C(4)mpy] [PF6] yielded four new, different open framework manganese compounds, that is, K2Mn3 (HPO4)(2)(PO3F)F-2 (1), (NH4)(2)Mn-3 (HPO4)(2) (PO3F)-F-2 (2), KMn3 (H2PO4)(HPO4)(2)F-2 (3), and (NH4)Mn-3(H2PO4)(PO3F)(2)F-2 (4). The obtained products not only feature new framework topologies unprecedented in the family of phosphates but also interesting properties as the transition metal gives rise to both luminescent (rendering them potential nonrare earth containing red emitting phosphors) and unconventional magnetic properties governed by geometric frustrations. Aside from the structural analysis (powder and single-crystal X-ray diffraction, infrared spectroscopy), a variety of characterization methods (photoluminescence spectroscopy and magnetic measurements) were applied to study the material's properties. Single crystal X-ray studies reveal that 1 (P2(1)/c with a = 5.501(1), b = 14.203(3), c = 16.905(4) angstrom, beta = 108.65(3)degrees, V = 1251.4 angstrom(3), and Z = 4) and 2 (P2(1)/c with a = 5.587(1), b = 14.507(3), c = 17.364(3) angstrom, beta = 108.75(3)degrees, V = 1332.6(5) angstrom(3), and Z = 4) feature S-shaped 18-ring channels along [100], which are formed by trimer-Mn3O9F2 chains parallel to [100] and interconnecting PO3 (OH) and PO3F tetrahedra. The structure of compounds 3 (C2/c with a = 20.307(4), b = 7.635(1), c = 7.834(2) angstrom, beta = 103.26(3)degrees, V = 1182.2(4) angstrom(3), and Z = 4) and 4 (C2/c with a = 20.402(4), b = 7.673(1), c = 7.845(2) angstrom, beta = 103.56(3)degrees, V = 1193.8(4) angstrom(3), and Z = 4) are characterized by layers, which are built of Mn3O8F4 octahedra trimers, with Kagome topology parallel to the be plane featuring 3,6-ring channels. The layers are stacked according to a sequence of AA(i) along the a axis. Taking into account the [P(2)O-3(OH)/P(2)O3F] tetrahedra, the Kagome layers are replenished to a Mn3O2 (HPO4)/Mn3O2 (PO3F) composition, which are interlinked by [P(1)O-2(OH)(2)] forming 10-ring channels parallel to [001]. Charge compensation of the macroanions is achieved by K+ (1 and 3) and (NH4)(+) (2 and 4) cations. At room temperature, compounds 1-4 demonstrate a reddish orange emission ascribed to the spin-forbidden T-4(1g)((4)G) -> (6)A(1g) (S-6) transition of the Mn2+ ions. Upon lowering the temperature to 77 K, the emission of each compound is red-shifted and becomes pure red. Compounds 1 and 2 contain spin trimers with a presumable doubled ground state. The intertrimer magnetic coupling is relatively weak, and small ferrimagnetic domains are possible in 1. The magnetic behavior of 3 and 4 can be considered as antiferromagnetic. This can be understood as their staircase Kagome lattices are distorted, meaning that the intrinsic geometrical frustration is lifted.
  •  
12.
  • Wang, Guangmei, et al. (författare)
  • Ionothermal Synthesis, Structures, and Magnetism of Three New Open Framework Iron Halide-Phosphates
  • 2019
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 58:19, s. 13203-13212
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of different open framework iron phosphates have been synthesized ionothermally using a task-specific ionic liquid, 1-butyl-4-methylpyridinium hexafluorophosphate, that acts in the synthesis as the reaction medium and mineralizer: (NH4)(2)Fe-2(HPO4)(PO4)Cl2F (1) and K2Fe2(HPO4(PO4)Cl2F (2) exhibit similar composition and closely related structural features. Both structures consist of {Fe-2(HPO4)(PO4)-Cl2F}(2)- macroanions and charge balancing ammonium or potassium cations. Their open framework structure contains layers and chains of corner-linked {Fe(1)O2Cl4} and {Fe(2)F2O4} octahedra, respectively, interconnected by PO4 tetrahedra forming 10-ring channels. KFe(PO3F)F-2 (3) is built up by {Fe[(PO3F)(4/3)F-2/2]}{Fe(PO3F)(2/3) F2/2F2} layers separated by K+ cations. Chains of alternating {FeF2O4} and {FeO2F4} octahedra, which are linear for 1 but undulated for 2, are linked to each other via corner-sharing {PO3F} tetrahedra with the fluorine pointing into the interlayer space. The compounds were characterized by means of single crystal and powder X-ray diffraction, infrared spectroscopy, and magnetic measurements. 1 reveals a strong ground state spin anisotropy with a spin 5/2 state and a magnetic moment of 5.3 mu(B) /Fe3+. Specific heat and magnetic data unveil three magnetic transitions at 95, 50, and 3.6 K. Compound 2 has a very similar crystal structure as compared to 1 but exhibits a different magnetic behavior: a slightly lower magnetic moment of 4.7 mu(B)/Fe3+ and a magnetic transition to a canted antiferromagnetic state below 90 K. Compound 3 exhibits typical paramagnetic behavior close to room-temperature (5.71 mu(B)/Fe3+). There are no clear indications for a phase transition down to 2 K despite strong antiferromagnetic spin-spin interactions; only a magnetic anomaly appears at 50 K in the zero-field cooled data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy