SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muschiol S) "

Sökning: WFRF:(Muschiol S)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Hober, Sophia, Professor, 1965-, et al. (författare)
  • Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay
  • 2021
  • Ingår i: Clinical & Translational Immunology. - : Wiley. - 2050-0068. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods. More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results. Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion. These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Blixt, L., et al. (författare)
  • Covid-19 in patients with chronic lymphocytic leukemia : clinical outcome and B- and T-cell immunity during 13 months in consecutive patients
  • 2022
  • Ingår i: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:2, s. 476-481
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied clinical and immunological outcome of Covid-19 in consecutive CLL patients from a well-defined area during month 1–13 of the pandemic. Sixty patients (median age 71 y, range 43–97) were identified. Median CIRS was eight (4–20). Patients had indolent CLL (n = 38), had completed (n = 12) or ongoing therapy (n = 10). Forty-six patients (77%) were hospitalized due to severe Covid-19 and 11 were admitted to ICU. Severe Covid-19 was equally distributed across subgroups irrespective of age, gender, BMI, CLL status except CIRS (p < 0.05). Fourteen patients (23%) died; age ≥75 y was the only significant risk factor (p < 0.05, multivariate analysis with limited power). Comparing month 1–6 vs 7–13 of the pandemic, deaths were numerically reduced from 32% to 18%, ICU admission from 37% to 15% whereas hospitalizations remained frequent (86% vs 71%). Seroconversion occurred in 33/40 patients (82%) and anti-SARS-CoV-2 antibodies were detectable at six and 12 months in 17/22 and 8/11 patients, respectively. Most (13/17) had neutralizing antibodies and 19/28 had antibodies in saliva. SARS-CoV-2-specific T-cells (ELISpot) were detected in 14/17 patients. Covid-19 continued to result in high admission even among consecutive and young early- stage CLL patients. A robust and durable B and/or T cell immunity was observed in most convalescents.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Oliveira, V, et al. (författare)
  • The Role of Minor Pilins in Assembly and Function of the Competence Pilus of Streptococcus pneumoniae
  • 2021
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 11, s. 808601-
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable genomic plasticity of Streptococcus pneumoniae largely depends on its ability to undergo natural genetic transformation. To take up extracellular DNA, S. pneumoniae assembles competence pili composed of the major pilin ComGC. In addition to ComGC, four minor pilins ComGD, E, F, and G are expressed during bacterial competence, but their role in pilus biogenesis and transformation is unknown. Here, using a combination of protein-protein interaction assays we show that all four proteins can directly interact with each other. Pneumococcal ComGG stabilizes the minor pilin ComGD and ComGF and can interact with and stabilize the major pilin ComGC, thus, deletion of ComGG abolishes competence pilus assembly. We further demonstrate that minor pilins are present in sheared pili fractions and find ComGF to be incorporated along the competence pilus by immunofluorescence and electron microscopy. Finally, mutants of the invariant Glu5 residue (E5), ComGDE5A or ComGEE5A, but not ComGFE5A, were severely impaired in pilus formation and function. Together, our results suggest that ComGG, lacking E5, is essential for competence pilus assembly and function, and plays a central role in connecting the pneumococcal minor pilins to ComGC.
  •  
17.
  • Oliveira, V, et al. (författare)
  • The Role of Minor Pilins in Assembly and Function of the Competence Pilus of Streptococcus pneumoniae
  • 2021
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 11, s. 808601-
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable genomic plasticity of Streptococcus pneumoniae largely depends on its ability to undergo natural genetic transformation. To take up extracellular DNA, S. pneumoniae assembles competence pili composed of the major pilin ComGC. In addition to ComGC, four minor pilins ComGD, E, F, and G are expressed during bacterial competence, but their role in pilus biogenesis and transformation is unknown. Here, using a combination of protein-protein interaction assays we show that all four proteins can directly interact with each other. Pneumococcal ComGG stabilizes the minor pilin ComGD and ComGF and can interact with and stabilize the major pilin ComGC, thus, deletion of ComGG abolishes competence pilus assembly. We further demonstrate that minor pilins are present in sheared pili fractions and find ComGF to be incorporated along the competence pilus by immunofluorescence and electron microscopy. Finally, mutants of the invariant Glu5 residue (E5), ComGDE5A or ComGEE5A, but not ComGFE5A, were severely impaired in pilus formation and function. Together, our results suggest that ComGG, lacking E5, is essential for competence pilus assembly and function, and plays a central role in connecting the pneumococcal minor pilins to ComGC.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy