SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nácher E.) srt2:(2010-2014)"

Sökning: WFRF:(Nácher E.) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvarez-Pol, H., et al. (författare)
  • Performance analysis for the CALIFA Barrel calorimeter of the (RB)-B-3 experiment
  • 2014
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 767, s. 453-466
  • Tidskriftsartikel (refereegranskat)abstract
    • The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the (RB)-B-3 facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5-6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a "Forward EndCap" and a cylindrical "Barrel" covering an angular range from 43.2 degrees to 140.3 degrees. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations. (C) 2014 Elsevier B.V. All rights reserved
  •  
2.
  • Cortina-Gil, D., et al. (författare)
  • CALIFA, a Dedicated Calorimeter for the R3B/FAIR
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 1095-9904 .- 0090-3752. ; 120, s. 99-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The R3B experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the R3B experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction.
  •  
3.
  • Cortina-Gil, D., et al. (författare)
  • CALIFA, a Dedicated Calorimeter for the (RB)-B-3/FAIR
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752. ; 120, s. 99-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The (RB)-B-3 experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the (RB)-B-3 experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction.
  •  
4.
  • Tengblad, O., et al. (författare)
  • Phoswich scintillator for proton and gamma radiation of high energy
  • 2011
  • Ingår i: AIP Conference Proceedings. - : AIP. - 1551-7616 .- 0094-243X. - 9780735409835 ; 1409, s. 141-144
  • Konferensbidrag (refereegranskat)abstract
    • We present here a Phoswich scintillator design to achieve both high resolution gamma ray detection, and good efficiency for high energy protons. There are recent developments of new high resolution scintillator materials. Especially the LaBr3(Ce) and LaCl3(Ce) crystals have very good energy resolution in the order of 3% for 662 keV gamma radiation. In addition, these materials exhibit a very good light output (63 and 32 photons/keV respectively). A demonstrator detector in the form of an Al cylinder of 24 mm diameter and a total length of 80 mm with 2 mm wall thickness, containing a LaBr3(Ce) crystal of 20 mm diameter and 30 mm length directly coupled to a LaCl3(Ce) crystal of 50 mm length, and closed with a glass window of 5 mm, was delivered by Saint Gobain. To the glass window a Hamamatsu R5380 Photomultiplier tube (PMT) was coupled using silicon optical grease. © 2011 American Institute of Physics.
  •  
5.
  • del Rio, J. S., et al. (författare)
  • CEPA: A LaBr 3 (Ce)/LaCl 3 (Ce) phoswich array for simultaneous detection of protons and gamma radiation emitted in reactions at relativistic energies
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • A prototype CEPA4, made of four optically isolated phoswich-crystals of LaBr3(Ce)+LaCl3(Ce) packed together in one can of Al, was tested with high energy protons (70-230 MeV) at the cyclotron of Krakow. Further, the response to different gamma radiation standard sources and cosmic muons was determined. Shape analysis of the pulses derived from the four individually coupled PM-tubes was performed and were used as input functions for Monte Carlo simulations in order to simulate the efficiencies and resolutions of a final detector design consisting of 750 such phoswich crystals arranged in a cylindrical disc. © Owned by the authors, published by EDP Sciences, 2014.
  •  
6.
  • del Rio, J. S., et al. (författare)
  • CEPA: A LaBr3(Ce)/LaCl3(Ce) Phoswich array for simultaneous detection of protons and gamma radiation emitted in reactions at relativistic energies
  • 2014
  • Ingår i: International Journal of Modern Physics: Conference Series. Applications of Nuclear Techniques (CRETE13). - 2010-1945. ; 27, s. 1460143-
  • Konferensbidrag (refereegranskat)abstract
    • A sophisticated design of 750 LaBr3(Ce):LaCl3(Ce) phoswich crystals (CEPA10) with a segmentation determined by the Doppler correction and an energy resolution of 5% at 1 MeV is presented. Monte Carlo simulations have been performed for high energy protons (50–500 MeV) and gamma radiation (0.5–30 MeV) to determine the length and shape of the crystals for optimum performance of the detector. In the case of protons, the two-layer detector can be used as a ΔELaBr3 − ETot telescope or, for very high energies, as a double energy loss detector (ΔELaBr3 + ΔELaCl3), in order to determine the initial energy. In addition, an experimental test with high energy protons (70–230 MeV) was performed at the cyclotron center in Krakow, Poland with a first prototype of 2 x 2 phoswich rectangular crystals (CEPA4) packed in an aluminum can (0.5 mm case). To simulate CEPA10 efficiencies and resolutions, optical pulses detected in CEPA4 by photomultiplier tubes with a DAQ system were used as energy input functions in Monte Carlo simulations.
  •  
7.
  • Tengblad, Olof, 1957, et al. (författare)
  • LaBr3(Ce):LaCl3(Ce) Phoswich with pulse shape analysis for high energy gamma-ray and proton identification
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 704:0, s. 19-26
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel Phoswich design based on new generation scintillator crystals is presented. The detector composed from a combination of a LaBr3(Ce) with a LaCl3(Ce) crystal in one cylinder coupled to a photo multiplier tube has been tested both for incident gamma rays in the range of 0.3–6 MeV, as well as for high energy protons in the range 120–180 MeV. The Phoswich assembly has not significantly deteriorated the energy resolution, which for 662 KeV gamma rays gives a resolution of 4.5%, while for high energy protons (Ep=180 MeV) an energy resolution of 1% was obtained. It is shown that the signals from the two crystals can be separated in an event by event based mode. Using direct digitizing of the detector pulse an off-line pulse-shape analysis was performed built either on a total to tail or total to pulse height method in order to fully identify the incoming radiation. Our aim with this R&D is to in the future build a detector which is able to detect with good efficiency and resolution over a wide energy range; 0.1–30 MeV gamma rays and 20–400 MeV protons. Monte Carlo simulations made in order to design the next prototype are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy