SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nagi Saad) srt2:(2017)"

Sökning: WFRF:(Nagi Saad) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunn, James S., et al. (författare)
  • Why does a cooled object feel heavier? Psychophysical investigations into the Webers Phenomenon
  • 2017
  • Ingår i: BMC Neuroscience. - : BIOMED CENTRAL LTD. - 1471-2202. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It has long been known that a concomitantly cooled stimulus is perceived as heavier than the same object at a neutral temperature-termed Webers Phenomenon (WP). In the current study, we re-examined this phenomenon using well-controlled force and temperature stimuli to explore the complex interplay between thermal and tactile systems, and the peripheral substrates contributing to these interactions. A feedback-controlled apparatus was constructed using a mechanical stimulator attached to a 5- x 5-mm thermode. Force combinations of 0.5 and 1 N (superimposed on 1-N step) were applied to the ulnar territory of dorsal hand. One of the forces had a thermal component, being cooled from 32 to 28 degrees C at a rate of 2 degrees C/s with a 3-s static phase. The other stimulus was thermally neutral (32 degrees C). Participants were asked to report whether the first or the second stimulus was perceived heavier. These observations were obtained in the all-fibre-intact condition and following the preferential block of myelinated fibres by compression of ulnar nerve. Results: In normal condition, when the same forces were applied, all subjects displayed a clear preference for the cooled tactile stimulus as being heavier than the tactile-only stimulus. The frequency of this effect was augmented by an additional similar to 17% when cooling was applied concurrently with the second stimulus. Following compression block, the mean incidence of WP was significantly reduced regardless of whether cooling was applied concurrently with the first or the second stimulus. However, while the effect was abolished in case of former (elicited in amp;lt; 50% of trials), the compression block had little effect in four out of nine participants in case of latter who reported WP in at least 80% of trials (despite abolition of vibration and cold sensations). Conclusions: WP was found to be a robust tactile-thermal interaction in the all-fibre-intact condition. The emergence of inter-individual differences during myelinated block suggests that subjects may adopt strategies, unbeknownst to them, that focus on the dominant input (myelinated fibres, hence WP abolished by block) or the sum of convergent inputs (myelinated and C fibres, hence WP preserved during block) in order to determine differences in perceived heaviness.
  •  
2.
  • Liljencrantz, Jaquette, et al. (författare)
  • Slow brushing reduces heat pain in humans
  • 2017
  • Ingår i: European Journal of Pain. - : Wiley. - 1090-3801 .- 1532-2149. ; 21:7, s. 1173-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: C-tactile (CT) afferents are unmyelinated low-threshold mechanoreceptors optimized for signalling affective, gentle touch. In three separate psychophysical experiments, we examined the contribution of CT afferents to pain modulation. Methods: In total, 44 healthy volunteers experienced heat pain and CT optimal (slow brushing) and CT sub-optimal (fast brushing or vibration) stimuli. Three different experimental paradigms were used: Concurrent application of heat pain and tactile (slow brushing or vibration) stimulation; Slow brushing, applied for variable duration and intervals, preceding heat pain; Slow versus fast brushing preceding heat pain. Results: Slow brushing was effective in reducing pain, whereas fast brushing or vibration was not. The reduction in pain was significant not only when the CT optimal touch was applied simultaneously with the painful stimulus but also when the two stimuli were separated in time. For subsequent stimulation, the pain reduction was more pronounced for a shorter time interval between brushing and pain. Likewise, the effect was more robust when pain was preceded by a longer duration of brush stimulation. Strong CT-related pain reduction was associated with low anxiety and high calmness scores obtained by a state anxiety questionnaire. Conclusions: Slow brushing - optimal for CT activation - is effective in reducing pain from cutaneous heating. The precise mechanisms for the pain relief are as yet unknown but possible mechanisms include inhibition of nociceptive projection neurons at the level of the dorsal horn as well as analgesia through cortical mechanisms.
  •  
3.
  • Samir Samour, Mohamad, et al. (författare)
  • Minocycline Prevents Muscular Pain Hypersensitivity and Cutaneous Allodynia Produced by Repeated Intramuscular Injections of Hypertonic Saline in Healthy Human Participants
  • 2017
  • Ingår i: Journal of Pain. - : CHURCHILL LIVINGSTONE. - 1526-5900 .- 1528-8447. ; 18:8, s. 994-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Minocycline, a glial suppressor, prevents behavioral hypersensitivities in animal models of peripheral nerve injury. However, clinical trials of minocycline in human studies have produced mixed results. This study addressed 2 questions: can repeated injections of hypertonic saline (HS) in humans induce persistent hypersensitivity? Can pretreatment with minocycline, a tetracycline antibiotic with microglial inhibitory effects, prevent the onset of hypersensitivity? Twenty-seven healthy participants took part in this double-blind, placebo-controlled study, consisting of 6 test sessions across 2 weeks. At the beginning of every session, pressure-pain thresholds of the anterior muscle compartment of both legs were measured to determine the region distribution and intensity of muscle soreness. To measure changes in thermal sensitivity in the skin overlying the anterior muscle compartment of both legs, quantitative sensory testing was used to measure the cutaneous thermal thresholds (cold sensation, cold pain, warm sensation, and heat pain) and a mild cooling stimulus was applied to assess the presence of cold allodynia. To induce ongoing hypersensitivity, repeated injections of HS were administered into the right tibialis anterior muscle at 48-hour intervals. In the final 2 sessions (days 9 and 14), only sensory assessments were done to plot the recovery after cessation of HS administrations and drug washout. By day 9, nontreated participants experienced a significant bilateral increase in muscle soreness (P amp;lt; .0001), accompanied by the emergence of bilateral cold allodynia in 44% of participants, thus confirming the effectiveness of the model. Placebo-treated participants experienced a bilateral 35% alleviation in muscle soreness (P amp;lt; .0001), with no changes to the prevalence of cold allodynia. In contrast, minocycline-treated participants experienced a bilateral 70% alleviation in muscle soreness (P amp;lt; .0001), additionally, only 10% of minocycline-treated participants showed cold allodynia. This study showed that repeated injections of HS can induce a hypersensitivity that outlasts the acute response, and the development of this hypersensitivity can be reliably attenuated with minocycline pretreatment. Perspective: Four repeated Injections of HS at 48-hour intervals induce a state of persistent hypersensitivity in healthy human participants. This hypersensitivity was characterized by bilateral muscular hyperalgesia and cutaneous cold allodynia, symptoms commonly reported in many chronic pain conditions. Minocycline pretreatment abolished the development of this state. Crown Copyright (C) 2017 Published by Elsevier Inc. on behalf of the American Pain Society
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy