SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nagorny Cecilia) srt2:(2008-2009)"

Sökning: WFRF:(Nagorny Cecilia) > (2008-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dekker Nitert, Marloes, et al. (författare)
  • CaV1.2 rather than CaV1.3 is coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells.
  • 2008
  • Ingår i: Journal of Molecular Endocrinology. - 1479-6813. ; 41:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • In clonal beta-cell lines and islets from different species, a variety of calcium channels are coupled to glucose-stimulated insulin secretion. The aim of this study was to identify the voltage-gated calcium channels that control insulin secretion in insulinoma (INS)-1 832/13 cells. The mRNA level of Ca(V)1.2 exceeded that of Ca(V)1.3 and Ca(V)2.3 two-fold. Insulin secretion, which rose tenfold in response to 16.7 mM glucose, was completely abolished by 5 microM isradipine that blocks Ca(V)1.2 and Ca(V)1.3. Similarly, the increase in intracellular calcium in response to 15 mM glucose was decreased in the presence of 5 microM isradipine, and the frequency of calcium spikes was decreased to the level seen at 2.8 mM glucose. By contrast, inhibition of Ca(V)2.3 with 100 nM SNX-482 did not significantly affect insulin secretion or intracellular calcium. Using RNA interference, Ca(V)1.2 mRNA and protein levels were knocked down by approximately 65% and approximately 34% respectively, which reduced insulin secretion in response to 16.7 mM glucose by 50%. Similar reductions in calcium currents and cell capacitance were seen in standard whole-cell patch-clamp experiments. The remaining secretion of insulin could be reduced to the basal level by 5 microM isradipine. Calcium influx underlying this residual insulin secretion could result from persisting Ca(V)1.2 expression in transfected cells since knock-down of Ca(V)1.3 did not affect glucose-stimulated insulin secretion. In summary, our results suggest that Ca(V)1.2 is critical for insulin secretion in INS-1 832/13 cells.
  •  
2.
  • Lyssenko, Valeriya, et al. (författare)
  • Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 82-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in beta cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal beta cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on beta cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.
  •  
3.
  • Mulder, Hindrik, et al. (författare)
  • Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52, s. 1240-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is a circulating hormone that is primarily released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms; its levels are high during the night and low during the day. Interestingly, insulin levels also exhibit a nocturnal drop, which has previously been suggested to be controlled, at least in part, by melatonin. This regulation can be explained by the proposed inhibitory action of melatonin on insulin release. Indeed, both melatonin receptor 1A (MTNR1A) and MTNR1B are expressed in pancreatic islets. The role of melatonin in the regulation of glucose homeostasis has been highlighted by three independent publications based on genome-wide association studies of traits connected with type 2 diabetes, such as elevated fasting glucose, and, subsequently, of the disease itself. The studies demonstrate a link between variations in the MTNR1B gene, hyperglycaemia, impaired early phase insulin secretion and beta cell function. The risk genotype predicts the future development of type 2 diabetes. Carriers of the risk genotype exhibit increased expression of MTNR1B in islets. This suggests that these individuals may be more sensitive to the actions of melatonin, leading to impaired insulin secretion. Blocking the inhibition of insulin secretion by melatonin may be a novel therapeutic avenue for type 2 diabetes.
  •  
4.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy