SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neely D) srt2:(2005-2009)"

Sökning: WFRF:(Neely D) > (2005-2009)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McKenna, P., et al. (författare)
  • Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets
  • 2008
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 26:4, s. 591-596
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients due, to self-focusing Of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.
  •  
2.
  • Pirozhkov, A. S., et al. (författare)
  • Diagnostic of laser contrast using target reflectivity
  • 2009
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 94:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Using three different laser systems, we demonstrate a convenient and simple plasma based diagnostic of the contrast of high-power short-pulse lasers. The technique is based on measuring the specular reflectivity from a solid target. The reflectivity remains high even at relativistic intensities above 10(19) W/cm(2) in the case of a high-contrast prepulse-free laser. On the contrary, the specular reflectivity drops with increasing intensities in the case of systems with insufficient contrast due to beam breakup and increased absorption caused by preplasma.
  •  
3.
  • Carroll, DC, et al. (författare)
  • Active manipulation of the spatial energy distribution of laser-accelerated proton beams
  • 2007
  • Ingår i: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). - 1539-3755. ; 76:065401(R), s. 1-065401
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10^19 W/cm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10^13 W/cm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.
  •  
4.
  • McKenna, P., et al. (författare)
  • Lateral electron transport in high-intensity laser-irradiated foils diagnosed by ion emission
  • 2007
  • Ingår i: Physical Review Letters. - 1079-7114. ; 98:14
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>= 10(19) W/cm(2)) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields (similar to 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.
  •  
5.
  • Nuernberg, F., et al. (författare)
  • Radiochromic film imaging spectroscopy of laser-accelerated proton beams
  • 2009
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 80:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.
  •  
6.
  • Robinson, A. P. L., et al. (författare)
  • Spectral modification of laser-accelerated proton beams by self-generated magnetic fields
  • 2009
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.
  •  
7.
  •  
8.
  • Clarke, R. J., et al. (författare)
  • Detection of short lived radioisotopes as a fast diagnostic for intense laser-solid interactions
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 89:14
  • Tidskriftsartikel (refereegranskat)abstract
    • As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.
  •  
9.
  • Cherniack, Martin, et al. (författare)
  • The Hand-Arm Vibration International Consortium (HAVIC) : prospective studies on the relationship between power tool exposure and health effects.
  • 2007
  • Ingår i: Journal of Occupational and Environmental Medicine. - 1076-2752 .- 1536-5948. ; 49:3, s. 289-301
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: The Hand-Arm Vibration International Consortium (HAVIC) is a collaboration of investigators from Europe and North America studying health effects from hand-arm vibration (HAV). Features include prospective design, cross-cohort exposure, and health assessment methods. METHODS: Two new cohorts (dental hygienists and dental hygiene students), two existing cohorts (Finnish forest workers, and Swedish truck cab assemblers), and a previous population (US shipyard workers) are included. Instruments include surveys, quantitative medical tests, physical examination, and work simulation and data logging to assess exposure. New methods were developed for nerve conduction and data logging. RESULTS: Findings on the relationship between nerve conduction and skin temperature in HAV-exposed subjects resulted in a new approach to subject warming. CONCLUSIONS: Integrating established cohorts has advantages over de novo cohort construction. Complex laboratory tests can be successfully adapted for field use.
  •  
10.
  • McKenna, P, et al. (författare)
  • High-intensity laser-driven proton acceleration: influence of pulse contrast
  • 2006
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science. - : The Royal Society. - 1364-503X .- 1471-2962. ; 364:1840, s. 711-723
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton acceleration from the interaction of ultra-short laser pulses with thin foil targets at intensities greater than 10(18) W cm(-2) is discussed. An overview of the physical processes giving rise to the generation of protons with multi-MeV energies, in well defined beams with excellent spatial quality, is presented. Specifically, the discussion centres on the influence of laser pulse contrast on the spatial and energy distributions of accelerated proton beams. Results from an ongoing experimental investigation of proton acceleration using the 10 Hz multi-terawatt Ti : sapphire laser (35 fs, 35 TW) at the Lund Laser Centre are discussed. It is demonstrated that a window of amplified spontaneous emission (ASE) conditions exist, for which the direction of proton emission is sensitive to the ASE-pedestal preceding the peak of the laser pulse, and that by significantly improving the temporal contrast, using plasma mirrors, efficient proton acceleration is observed from target foils with thickness less than 50 nm.
  •  
11.
  • McKenna, P, et al. (författare)
  • Low- and medium-mass ion acceleration driven by petawatt laser plasma interactions
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335. ; 49:B223, s. 223-231
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental investigation of low- and medium-mass ion acceleration from resistively heated thin foil targets, irradiated by picosecond laser pulses at intensities up to 5 × 10^20 Wcm−2, is reported. It is found that the spectral distributions of ions, up to multi-MeV/nucleon energies, accelerated from the rear surface of the target are broadly consistent with previously reported measurements made at intensities up to 5 × 10^19 Wcm−2. Properties of the backward-directed beams of ions accelerated from the target front surface are also measured, and it is found that, compared with the rear surface, higher ion numbers and charges, and similar ion energies are produced. Additionally, the scaling of the maximum ion energy as a function of ion charge and laser intensity are measured and compared with the predictions of a numerical model.
  •  
12.
  • Neely, D., et al. (författare)
  • Enhanced proton beams from ultrathin targets driven by high contrast laser pulses
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 89:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of proton beams from ultrathin targets, down to 20 nm in thickness, driven with ultrahigh contrast laser pulses is explored. the conversion efficiency from laser energy into protons increases as the foil thickness is decreased, with good beam quality and high efficiencies of 1% being achieved, for protons with kinetic energy exceeding 0.9 MeV, for 100 nm thick aluminum foils at intensities of 10(19) W/cm(2) with 33 fs, 0.3 J pulses. To minimize amplified spontaneous emission (ASE) induced effects disrupting the acceleration mechanism, exceptional laser to ASE intensity contrasts of up to 1010 are achieved by introducing a plasma mirror to the high contrast 10 Hz multiterawatt laser at the Lund Laser Centre. It is shown that for a given laser energy on target, regimes of higher laser-to-proton energy conversion efficiency. can be accessed with increasing contrast. The increasing efficiency as the target thickness decreases is closely correlated to an increasing proton temperature. (c) 2006 American Institute of Physics.
  •  
13.
  • Robson, L, et al. (författare)
  • Scaling of proton acceleration driven by petawatt-laser-plasma interactions
  • 2007
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 3:58, s. 58-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of using high-power lasers to generate high-quality beams of energetic ions is attracting large global interest. The prospect of using laser-accelerated protons in medicine attracts particular interest, as these schemes may lead to compact and relatively low-cost sources. Among the challenges remaining before these sources can be used in medicine is to increase the numbers and energies of the ions accelerated. Here, we extend the energy and intensity range over which proton scaling is experimentally investigated, up to 400 J and 6×10^20 Wcm−2 respectively, and find a slower proton scaling than previously predicted. With the aid of plasma-expansion simulation tools, our results suggest the importance of time-dependent andmultidimensional effects in predicting the maximum proton energy in this ultrahigh-intensity regime. The implications of our new understanding of proton scaling for potential medical applications are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy