SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neese Frank) srt2:(2010-2014)"

Sökning: WFRF:(Neese Frank) > (2010-2014)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ames, William, et al. (författare)
  • Theoretical Evaluation of Structural Models of the S(2) State in the Oxygen Evolving Complex of Photosystem II : Protonation States and Magnetic Interactions
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:49, s. 19743-19757
  • Tidskriftsartikel (refereegranskat)abstract
    • Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.
  •  
2.
  • Cox, Nicholas, et al. (författare)
  • Effect of Ca(2+)/Sr(2+) substitution on the electronic structure of the oxygen-evolving complex of photosystem II : a combined multifrequency EPR, (55)Mn-ENDOR, and DFT study of the S(2) State
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:10, s. 3635-3648
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
  •  
3.
  • Cox, Nicholas, et al. (författare)
  • Electronic Structure of a Weakly Antiferromagnetically Coupled Mn(II)Mn(III) Model Relevant to Manganese Proteins : A Combined EPR, (55)Mn-ENDOR, and DFT Study
  • 2011
  • Ingår i: Inorganic Chemistry. - : American Chemical Society. - 0020-1669 .- 1520-510X. ; 50:17, s. 8238-8251
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis of the electronic structure of the [Mn(II)Mn(III)(μ-OH)-(μ-piv)(2)(Me(3)tacn)(2)](ClO(4))(2) (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-μ-hydroxo bridge, bis-μ-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the Mn(III). All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the (55)Mn-ENDOR constrains the (55)Mn hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the Mn(II) and Mn(III) ions. The large effective hyperfine tensor anisotropy of the Mn(II), a d(5) ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the Mn(III) ion strongly perturbs the zero-field energy levels of the Mn(II)Mn(III) complex. An estimate of the fine structure parameter (d) for the Mn(III) of -4 cm(-1) was made, by assuming the intrinsic anisotropy of the Mn(II) ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the Mn(III) is consistent with the known coordination environment of the Mn(III) ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.
  •  
4.
  • Cox, Nicholas, et al. (författare)
  • Electronic Structure of a Weakly Antiferromagnetically Coupled MnIIMnIII Model Relevant to Manganese Proteins : A Combined EPR, 55Mn-ENDOR, and DFT Study
  • 2011
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 50:17, s. 8238-8251
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis of the electronic structure of the [(MnMnIII)-Mn-II(mu-OH)-(mu-piv)(2)(Me(3)tacn)(2)] (ClO4)(2) (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-mu-hydroxo bridge, bis-mu-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the Mn-III. All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the Mn-55-ENDOR constrains the Mn-55 hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the Mn-II and Mn-III ions. The large effective hyperfine tensor anisotropy of the Mn-II, a d(5) ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the Mn-III ion strongly perturbs the zero-field energy levels of the (MnMnIII)-Mn-II complex. An estimate of the fine structure parameter (d) for the Mn-III of -4 cm(-1) was made, by assuming the intrinsic anisotropy of the Mn-II ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the Mn-III is consistent with the known coordination environment of the Mn-III ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.
  •  
5.
  • Maganas, Dimitrios, et al. (författare)
  • Combined Experimental and ab initio Multi Reference Configuration Interaction study of the Resonant Inelastic X-RayScattering spectrum of CO2
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:35, s. 20163-20175
  • Tidskriftsartikel (refereegranskat)abstract
    • The fundamental problem of the symmetry breaking in the resonant inelastic X-ray scattering (RIXS) of the CO2 gas molecule is studied. The measurements were performed under catalytically relevant conditions within an in-house constructed reaction cell. The experimental RIXS plane is constructed from a sequence of resonances, covering the near-edge X-ray absorption fine structure (NEXAFS) spectrum up to 539 eV. The spectra show significant sensitivity with respect to the excitation frequency. The NEXAFS absorption spectrum, as well as the corresponding RIXS spectra, is interpreted with the aid of multireference configuration interaction (MRCI) theory. In this framework, the configuration interaction space spans the space of the intermediate and final states with single and single-double excitations. The dynamic character of the RIXS spectra is investigated by considering the electronic-nuclear vibrational coupling with the bending and antisymmetric stretching vibrations in the important intermediate excited states. In addition, the vibronic coupling mechanism involving the Renner-Teller effect and the core-hole localization pseudo-Jahn-Teller effect of the intermediate states is fully considered. The physical origin of the observed spectral features is discussed qualitatively and quantitatively in terms of individual core-to-valence excitations and valence-to-core decays, respectively. The computational protocol presented here, based on multireference wave function ab initio theory, serves as an important reference for future theoretical and experimental applications of RIXS spectroscopy.
  •  
6.
  • Navarro, Montserrat Perez, et al. (författare)
  • Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (µ-oxo) of the manganese tetramer
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:39, s. 15561-15566
  • Tidskriftsartikel (refereegranskat)abstract
    • The assignment of the two substrate water sites of the tetramanganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (mu-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522-3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable mu-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable mu-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55-60]}; (ii) ammonia displaces a water ligand to the outer manganese (Mn-A4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the Mn-A4-O5 bond, leading to the perturbation of the mu-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water.
  •  
7.
  • Rapatskiy, Leonid, et al. (författare)
  • Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy
  • 2012
  • Ingår i: Journal of the American Chemical Society. - Washington : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 134:40, s. 16619-16634
  • Tidskriftsartikel (refereegranskat)abstract
    • Water binding to the Mn4O5Ca cluster of the oxygen-evolving complex (OEC) of Photosystem II (PSII) poised in the S2 state was studied via H217O- and 2H2O-labeling and high-field electron paramagnetic resonance (EPR) spectroscopy. Hyperfine couplings of coordinating 17O (I = 5/2) nuclei were detected using W-band (94 GHz) electron–electron double resonance (ELDOR) detected NMR and Davies/Mims electron–nuclear double resonance (ENDOR) techniques. Universal 15N (I = 1/2) labeling was employed to clearly discriminate the 17O hyperfine couplings that overlap with 14N (I = 1) signals from the D1-His332 ligand of the OEC (Stich Biochemistry 2011, 50 (34), 7390−7404). Three classes of 17O nuclei were identified: (i) one μ-oxo bridge; (ii) a terminal Mn–OH/OH2 ligand; and (iii) Mn/Ca–H2O ligand(s). These assignments are based on 17O model complex data, on comparison to the recent 1.9 Å resolution PSII crystal structure (Umena Nature 2011, 473, 55−60), on NH3 perturbation of the 17O signal envelope and density functional theory calculations. The relative orientation of the putative 17O μ-oxo bridge hyperfine tensor to the 14N(15N) hyperfine tensor of the D1-His332 ligand suggests that the exchangeable μ-oxo bridge links the outer Mn to the Mn3O3Ca open-cuboidal unit (O4 and O5 in the Umena et al. structure). Comparison to literature data favors the Ca-linked O5 oxygen over the alternative assignment to O4. All 17O signals were seen even after very short (≤15 s) incubations in H217O suggesting that all exchange sites identified could represent bound substrate in the S1 state including the μ-oxo bridge. 1H/2H (I = 1/2, 1) ENDOR data performed at Q- (34 GHz) and W-bands complement the above findings. The relatively small 1H/2H couplings observed require that all the μ-oxo bridges of the Mn4O5Ca cluster are deprotonated in the S2 state. Together, these results further limit the possible substrate water-binding sites and modes within the OEC. This information restricts the number of possible reaction pathways for O–O bond formation, supporting an oxo/oxyl coupling mechanism in S4.
  •  
8.
  • Roos, Katarina, 1982- (författare)
  • Manganese and Iron Heterodimers and Homodimers in Enzymes : Insights from Density Functional Theory
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The enzyme ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides, the building blocks of DNA, and is essential for all organisms. Canonical class I RNR R2 proteins use a diiron cofactor to generate a tyrosyl radical, which is required for catalysis. Recent discoveries have established that the different subgroups of class I RNR employ different metal cofactors. Class Ib R2 (R2F) utilizes a dimanganese cofactor and a flavoprotein to generate the tyrosyl radical. Class Ic R2 (R2c) lacks the radical-bearing tyrosine, and instead has an oxidized heterodinuclear manganese-iron center, the first known redox active MnFe cofactor. A second group of MnFe proteins with different functions, denoted R2-like ligand binding oxidases (R2lox), was later identified. R2lox proteins are capable of performing two-electron oxidations and are believed to be hydrocarbon oxidases. In the present thesis density functional theory, a quantum mechanical method, is employed to study the manganese and iron heterodimers and homodimers in the R2 and R2lox proteins, with the aim to shed light on the mechanistic details and stress the main features of the alternative metal centers. Some of the questions addressed are the radical generation with the homodimers and heterodimer in R2, the radical transfer between R2 and the RNR catalytic subunit, and the function of R2lox. A Mn(IV)Fe(III) state is shown to be an equally strong oxidant as a tyrosyl radical, giving a rationalization for the presence of the heterodimer in R2c. A reaction mechanism for the formation of an unprecedented tyrosine-valine crosslink catalyzed by the heterodimer in R2lox is modeled, and the potential of the protein to perform hydroxylations of hydrocarbons based on calculated barriers for methane hydroxylation is discussed. An energetically possible reaction mechanism is suggested for activation of dimanganese R2F by hydrogen peroxide, and a hypothetical role of the flavoprotein in radical generation is proposed.
  •  
9.
  • Shafaat, Hannah S., et al. (författare)
  • Electronic Structural Flexibility of Heterobimetallic Mn/Fe Cofactors : R2lox and R2c Proteins
  • 2014
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 136:38, s. 13399-13409
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Hogbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn-III/Fe-III dimer linked by a mu-hydroxo/bis-mu-carboxylato bridging network. The Mn-III ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2lox(photo)) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn-III/Fe-III cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn-III ion, as best evidenced by a reorientation of its unique Mn-55 hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the mu-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.
  •  
10.
  • Su, Ji-Hu, et al. (författare)
  • The electronic structures of the S(2) states of the oxygen evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - Amsterdam : Elsevier. - 0006-3002 .- 1878-2434 .- 0005-2728 .- 1879-2650. ; 1807:7, s. 829-840
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.
  •  
11.
  • Vancoillie, Steven, et al. (författare)
  • Multireference Ab Initio Calculations of g tensors for Trinuclear Copper Clusters in Multicopper Oxidases.
  • 2010
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 114:22, s. 7692-7702
  • Tidskriftsartikel (refereegranskat)abstract
    • EPR spectroscopy has proven to be an indispensable tool in elucidating the structure of metal sites in proteins. In recent years, experimental EPR data have been complemented by theoretical calculations, which have become a standard tool of many quantum chemical packages. However, there have only been a few attempts to calculate EPR g tensors for exchange-coupled systems with more than two spins. In this work, we present a quantum chemical study of structural, electronic, and magnetic properties of intermediates in the reaction cycle of multicopper oxidases and of their inorganic models. All these systems contain three copper(II) ions bridged by hydroxide or O(2-) anions and their ground states are antiferromagnetically coupled doublets. We demonstrate that only multireference methods, such as CASSCF/CASPT2 or MRCI can yield qualitatively correct results (compared to the experimental values) and consider the accuracy of the calculated EPR g tensors as the current benchmark of quantum chemical methods. By decomposing the calculated g tensors into terms arising from interactions of the ground state with the various excited states, the origin of the zero-field splitting is explained. The results of the study demonstrate that a truly quantitative prediction of the g tensors of exchange-coupled systems is a great challenge to contemporary theory. The predictions strongly depend on small energy differences that are difficult to predict with sufficient accuracy by any quantum chemical method that is applicable to systems of the size of our target systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11
Typ av publikation
tidskriftsartikel (10)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Neese, Frank (10)
Lubitz, Wolfgang (8)
Cox, Nicholas (8)
Messinger, Johannes (6)
Rapatskiy, Leonid (6)
Pantazis, Dimitrios ... (5)
visa fler...
Ames, William (4)
Boussac, Alain (4)
Kulik, Leonid V (3)
Rutherford, A. Willi ... (2)
Dorlet, Pierre (2)
Nowaczyk, Marc M. (2)
Su, Ji-Hu (2)
Epel, Boris (2)
Wieghardt, Karl (2)
Lohmiller, Thomas (2)
Ames, William M. (2)
Siegbahn, Per E. M. (1)
Gräslund, Astrid (1)
DeBeer, Serena (1)
Högbom, Martin (1)
Ryde, Ulf (1)
Nilsson, Håkan (1)
Krewald, Vera (1)
Andersson, Charlotta ... (1)
Popović-Bijelić, Ana (1)
Pierloot, Kristine (1)
Vancoillie, Steven (1)
Messinger, Johannes, ... (1)
Griese, Julia J. (1)
Chalupsky, Jakub (1)
Solomon, Edward I. (1)
Rulisek, Lubomir (1)
Sugiura, Miwa (1)
Kulik, Leonid (1)
Roos, Katarina (1)
Shafaat, Hannah S. (1)
Kristiansen, Paw (1)
Blomberg, Margareta ... (1)
Schlögl, Robert (1)
Duda, Laurent Claudi ... (1)
Maganas, Dimitrios (1)
Gericke, Axel Knop (1)
Rögner, Matthias (1)
Navarro, Montserrat ... (1)
Savitsky, Anton (1)
Sander, Julia (1)
Roos, Katarina, 1982 ... (1)
Siegbahn, Per, Profe ... (1)
Neese, Frank, Profes ... (1)
visa färre...
Lärosäte
Uppsala universitet (8)
Umeå universitet (6)
Stockholms universitet (2)
Lunds universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy