SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nerstedt Annika 1960) srt2:(2010-2014)"

Sökning: WFRF:(Nerstedt Annika 1960) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet.
  • 2013
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 27:9, s. 3660-3671
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial depletion of serine/threonine protein kinase 25 (STK25), a member of the Ste20 superfamily of kinases, increases lipid oxidation and glucose uptake in rodent myoblasts. Here we show that transgenic mice overexpressing STK25, when challenged with a high-fat diet, develop reduced glucose tolerance and insulin sensitivity compared to wild-type siblings, as evidenced by impairment in glucose and insulin tolerance tests as well as in euglycemic-hyperinsulinemic clamp studies. The fasting plasma insulin concentration was elevated in Stk25 transgenic mice compared to wild-type littermates (4.9±0.8 vs. 2.6±0.4 ng/ml after 17 wk on high-fat diet, P<0.05). Overexpression of STK25 decreased energy expenditure during the dark phase of observation (P<0.05), despite increased spontaneous activity. The oxidative capacity of skeletal muscle of transgenic carriers was reduced, as evidenced by altered expression of Cpt1, Acox1, and ACC. Hepatic triglycerides and glycogen were elevated (1.6- and 1.4-fold, respectively; P<0.05) and expression of key enzymes regulating lipogenesis (Fasn), glycogen synthesis (Gck), and gluconeogenesis (G6pc, Fbp1) was increased in the liver of the transgenic mice. Our findings suggest that overexpression of STK25 in conditions of excess dietary fuels associates with a shift in the metabolic balance in peripheral tissues from lipid oxidation to storage, leading to a systemic insulin resistance.-Cansby, E., Amrutkar, M., Mannerås Holm, L., Nerstedt, A., Reyahi, A., Stenfeldt, E., Borén, J., Carlsson, P., Smith, U., Zierath, J.R., Mahlapuu, M. Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet.
  •  
2.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained
  • 2014
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 393:1-2, s. 143-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-6 (IL-6) induces hepatic inflammation and insulin resistance, and therapeutic strategies to counteract the IL-6 action in liver are of high interest. In this study, we demonstrate that acute treatment with AMP-activated protein kinase (AMPK) agonists AICAR and metformin efficiently repressed IL-6-induced hepatic proinflammatory gene expression and activation of STAT3 in a mouse model of diet-induced type 2 diabetes, bringing it back to basal nonstimulated level. Surprisingly, the inflammatory response in liver induced by IL-6 administration in vivo was markedly blunted in the mice fed a high-fat diet, compared to lean chow-fed controls, while this difference was not replicated in vitro in primary hepatocytes derived from these two groups of mice. In summary, our work reveals that partial hepatic IL-6 resistance develops in the mouse model of type 2 diabetes, while the anti-inflammatory action of AMPK is maintained. Systemic factors, rather than differences in intracellular IL-6 receptor signaling, are likely mediating the relative impairment in IL-6 effect.
  •  
3.
  • Nerstedt, Annika, 1960, et al. (författare)
  • AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3)
  • 2010
  • Ingår i: Diabetologia. - 0012-186X. ; 53:11, s. 2406-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM/HYPOTHESIS: The aim of the study was to examine the possible role of AMP-activated protein kinase (AMPK) in the regulation of the inflammatory response induced by cytokine action in human liver cells. METHODS: IL-6-stimulated expression of the genes for acute-phase response markers serum amyloid A (SAA1, SAA2) and haptoglobin (HP) in the human hepatocarcinoma cell line HepG2 were quantified after modulation of AMPK activity by pharmacological agonists (5-amino-4-imidazole-carboxamideriboside [AICAR], metformin) or by using small interfering (si) RNA transfection. The intracellular signalling pathway mediating the effect of AMPK on IL-6-stimulated acute-phase marker expression was characterised by assessing the phosphorylation levels of the candidate protein signal transducer and activator of transcription 3 (STAT3) in response to AMPK agonists. RESULTS: AICAR and metformin markedly blunt the IL-6-stimulated expression of SAA cluster genes as well as of haptoglobin in a dose-dependent manner. Moreover, the repression of AMPK activity by siRNA significantly reversed the inhibition of SAA expression by both AICAR and metformin, indicating that the effect of the agonists is dependent on AMPK. For the first time we show that AMPK appears to regulate IL-6 signalling by directly inhibiting the activation of the main downstream target of IL-6, STAT3. CONCLUSIONS/INTERPRETATION: We provide evidence for a key function of AMPK in suppression of the acute-phase response caused by the action of IL-6 in liver, suggesting that AMPK may act as an intracellular link between chronic low-grade inflammation and metabolic regulation in peripheral metabolic tissues.
  •  
4.
  • Nerstedt, Annika, 1960, et al. (författare)
  • Pharmacological activation of AMPK suppresses inflammatory response evoked by IL-6 signalling in mouse liver and in human hepatocytes
  • 2013
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 375:1-2, s. 68-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-6 (IL-6) induces inflammatory signalling in liver, leading to impaired insulin action in hepatocytes. In this study, we demonstrate that pharmacological activation of AMP-activated protein kinase (AMPK) represses IL-6-stimulated expression of proinflammatory markers serum amyloid A (Saa) as well as suppressor of cytokine signalling 3 (Socs3) in mouse liver. Further studies using the human hepatocellular carcinoma cell line HepG2 suggest that AMPK inhibits IL-6 signalling by repressing IL-6-stimulated phosphorylation of several downstream components of the pathway such as Janus kinase 1 (JAK1), SH2-domain containing protein tyrosine phosphatase 2 (SHP2) and signal transducer and activator of transcription 3 (STAT3). In summary, inhibition of IL-6 signalling cascade in liver by the metabolic master switch of the body, AMPK, supports the role of this kinase as a crucial point of convergence of metabolic and inflammatory pathways in hepatocytes.
  •  
5.
  • Nerstedt, Annika, 1960, et al. (författare)
  • Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 55:6, s. 1797-1807
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the role of serine/threonine protein kinase 25 (STK25), a member of the sterile 20 (STE20) superfamily of kinases, in the regulation of skeletal muscle metabolism. The effect of depleting STK25 in muscle cells was studied by reducing the mRNA and protein content of this target in the rat myoblast cell line L6 by small interfering (si)RNA. The changes in the mRNA and protein levels of several members of the fatty acid oxidative and glucose metabolic pathways were measured by quantitative real-time (qRT)-PCR and western blot. The rate of palmitate oxidation and glucose uptake was measured after transfection with siRNA for . Expression of was also evaluated in skeletal muscle biopsies from 41 white Europid men and women with normal and impaired glucose tolerance and type 2 diabetes using qRT-PCR. We demonstrate that partial depletion of STK25 increases the expression of uncoupling protein 3 (, accompanied by increased lipid oxidation, in myoblasts. In addition, a reduced level of STK25 enhances the expression of (also known as ), (also known as ) and hexokinase 2, and correspondingly, improves insulin-stimulated glucose uptake in muscle cells. Consistent with these results, significantly higher levels were observed in the skeletal muscle of type 2 diabetic patients, compared with individuals with normal glucose tolerance. This is the first study indicating a possible role for STK25 in the regulation of glucose and lipid metabolism in L6 myoblasts. This kinase appears to be an interesting new mediator to be evaluated for therapeutic intervention in type 2 diabetes and related complications, as controlled increase in lipid oxidation and insulin-stimulated glucose uptake in skeletal muscle is favourable and can restore energy balance in metabolically compromised states.
  •  
6.
  • Sjöblom-Hallén, A, et al. (författare)
  • Gene expression profiling identifies STAT3 as a novel pathway for immunomodulation by cholera toxin adjuvant.
  • 2010
  • Ingår i: Mucosal immunology. - : Elsevier BV. - 1935-3456 .- 1933-0219. ; 3:4, s. 374-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Earlier studies have reported on both proinflammatory and anti-inflammatory activities of cholera toxin (CT). As CT is a powerful adjuvant, we were interested in identifying genes with a possible involvement in these functions. A global gene expression analysis in mouse B cells showed that CT regulated <100 annotated genes, which encoded transcription factors, G proteins, cell-cycle regulators, and immunoregulating molecules. Interestingly, CT regulated the expression of the signal transducer and activator of transcription (STAT)3 gene and influenced the level and activation of both isoforms STAT3alpha and STAT3beta, in vitro in a B-cell line and in Peyer's patch (PP) B cells and in vivo in freshly isolated splenic B cells from CT-treated mice. This effect was cAMP dependent and was not seen with CTB. B cells pre-exposed to CT were significantly more susceptible to the activation of STAT3 by interleukin (IL)-6 and IL-10. This exerted a stronger inhibitory effect of IL-10 on lipopolysaccharide (LPS)-stimulated B-cell proliferation and cytokine production (IL-6). Moreover, IgG1 and IgA production induced by LPS and IL-10 were enhanced by the addition of CT to cultures of PP or splenic B cells. This is the first study to provide a molecular mechanism that can reconcile previous findings of proinflammatory and anti-inflammatory effects by CT adjuvant.Mucosal Immunology advance online publication 7 April 2010. doi:10.1038/mi.2010.16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy