SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neumann Nadja) srt2:(2010)"

Sökning: WFRF:(Neumann Nadja) > (2010)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Neumann, Nadja, et al. (författare)
  • Comparative Genomic Evidence for a Complete Nuclear Pore Complex in the Last Eukaryotic Common Ancestor
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe Nuclear Pore Complex (NPC) facilitates molecular trafficking between nucleus and cytoplasm and is an integral feature of the eukaryote cell. It exhibits eight-fold rotational symmetry and is comprised of approximately 30 nucleoporins (Nups) in different stoichiometries. Nups are broadly conserved between yeast, vertebrates and plants, but few have been identified among other major eukaryotic groups.Methodology/Principal FindingsWe screened for Nups across 60 eukaryote genomes and report that 19 Nups (spanning all major protein subcomplexes) are found in all eukaryote supergroups represented in our study (Opisthokonts, Amoebozoa, Viridiplantae, Chromalveolates and Excavates). Based on parsimony, between 23 and 26 of 31 Nups can be placed in LECA. Notably, they include central components of the anchoring system (Ndc1 and Gp210) indicating that the anchoring system did not evolve by convergence, as has previously been suggested. These results significantly extend earlier results and, importantly, unambiguously place a fully-fledged NPC in LECA. We also test the proposal that transmembrane Pom proteins in vertebrates and yeasts may account for their variant forms of mitosis (open mitoses in vertebrates, closed among yeasts). The distribution of homologues of vertebrate Pom121 and yeast Pom152 is not consistent with this suggestion, but the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution of closed mitosis in ascomycetes. We also report an updated screen for vesicle coating complexes, which share a common evolutionary origin with Nups, and can be traced back to LECA. Surprisingly, we find only three supergroup-level differences (one gain and two losses) between the constituents of COPI, COPII and Clathrin complexes.Conclusions/SignificanceOur results indicate that all major protein subcomplexes in the Nuclear Pore Complex are traceable to the Last Eukaryotic Common Ancestor (LECA). In contrast to previous screens, we demonstrate that our conclusions hold regardless of the position of the root of the eukaryote tree.
  •  
2.
  • Neumann, Nadja, 1977- (författare)
  • The evolution of the nuclear envelope
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The nucleus is one of the defining features of eukaryotes and the question of its origin is intimately linked to the evolution of the eukaryotic cell. It is delimited by a double lipid bilayer called the nuclear envelope, which separates the nuclear interior from the cytoplasm. The inner and outer membranes of the nucleus are continuous with one another creating a single folded envelope, interrupted by nuclear pore complexes (NPCs), which enable transport of proteins and RNA between nucleoplasm and cytoplasm. A combination of proteomic and bioinformatic analyses has shown that numerous Nups are conserved between yeast and vertebrates. As this only describes a subset of eukaryotic diversity, comparative genomic analyses were used to establish the extent to which the NPC is conserved across the eukaryotic tree. NPCs have been suggested to share a common origin with vesicle coat proteins of the endomembrane system. An additional goal of this work was therefore to establish the distribution of three complexes involved in vesicle transport between organelles of the secretory pathway, called COPI, COPII and Clathrin. Using profile hidden Markov models in combination with BLAST resulted in identification of nucleoporins and coat protein homologs across all five eukaryotic supergroups for which sequence data is available, indicating both were already present in the Last Eukaryotic Common Ancestor (LECA).Nup homologs were shown to be definitively absent from vestigial nucleomorph nuclei, resultant from secondary endosymbioses, suggesting that Nup genes have either been relocated to the host nuclear genome or that the same set of Nups are used for constructing both the NPC of the main nucleus and nucleomorph.´ We also tested the proposal that transmembrane Nups in vertebrates and yeasts may account for their variant forms of mitosis (‘open’ in vertebrates, ‘closed’ among yeasts). Consistent with this suggestion, the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution of 'closed’ mitosis in ascomycetes.A unique arrangement for the chromosomes occurs during early meiosis, where the telomeres cluster at the nuclear envelope, forming a distinct ‘bouquet’ arrangement. This forms prior to homolog pairing and recombination in meiosis I. Hypotheses concerning the antiquity of the bouquet were tested by examining the extent of conservation of proteins involved in this stage of meiosis. Distribution appeared patchy, so its presence in LECA could not be unequivocally established and is discussed together with a model aimed at explaining the functional role of the bouquet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy