SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nomoto M) srt2:(2020-2022)"

Sökning: WFRF:(Nomoto M) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belczynski, K., et al. (författare)
  • Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636:A&A
  • Tidskriftsartikel (refereegranskat)abstract
    • All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: A mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50âMâŠ. We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin-up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).
  •  
2.
  • Walker, Tom W. N., et al. (författare)
  • Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is releasing carbon from soils around the world1–3, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems4–9. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown10. Here we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.
  •  
3.
  • Zha, Shuai, et al. (författare)
  • Hydrodynamic simulations of electron-capture supernovae : progenitor and dimension dependence
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:1, s. 1317-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • We present neutrino-transport hydrodynamic simulations of electron-capture supernovae (ECSNe) in FLASH with new two-dimensional (2D) collapsing progenitor models. These progenitor models feature the 2D modelling of oxygen-flame propagation until the onset of core collapse. We perform axisymmetric simulations with six progenitor models that, at the time of collapse, span a range of propagating flame front radii. For comparison, we also perform a simulation with the same set-up using the canonical, spherically symmetrical progenitor model n8.8. We found that the variations in the progenitor models inherited from simulations of stellar evolution and flame propagation do not significantly alter the global properties of the neutrino-driven ECSN explosion, such as the explosion energy (∼1.36–1.48 × 1050 erg) and the mass (∼0.017–0.018 M⊙) and composition of the ejecta. Due to aspherical perturbations induced by the 2D flame, the ejecta contains a small amount (≲1.8 × 10−3 M⊙) of low-Ye (0.35 < Ye < 0.4) component. The baryonic mass of the protoneutron star is ∼1.34 M⊙ (∼1.357 M⊙) with the new (n8.8) progenitor models when simulations end at ∼400 ms and the discrepancy is due to updated weak-interaction rates in the progenitor evolutionary simulations. Our results reflect the nature of ECSN progenitors containing a strongly degenerate oxygen–neon–magnesium (ONeMg) core and suggest a standardized ECSN explosion initialized by ONeMg core collapse. Moreover, we carry out a rudimentary three-dimensional simulation and find that the explosion properties are fairly compatible with the 2D counterpart. Our paper facilitates a more thorough understanding of ECSN explosions following the ONeMg core collapse, though more three-dimensional simulations are still needed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy