SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordström Randi) srt2:(2019)"

Sökning: WFRF:(Nordström Randi) > (2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boge, Lukas, et al. (författare)
  • Peptide-Loaded Cubosomes Functioning as an Antimicrobial Unit against Escherichia coli
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society. - 1944-8244 .- 1944-8252. ; 11:24, s. 21314-21322
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersions of cubic liquid crystalline phases, also known as cubosomes, have shown great promise as delivery vehicles for a wide range of medicines. Due to their ordered structure, comprising alternating hydrophilic and hydrophobic domains, cubosomes possess unique delivery properties and compatibility with both water-soluble and -insoluble drugs. However, the drug delivery mechanism and cubosome interaction with human cells and bacteria are still poorly understood. Herein, we reveal how cubosomes loaded with the human cathelicidin antimicrobial peptide LL-37, a system with high bacteria-killing effect, interact with the bacterial membrane and provide new insights into the eradication mechanism. Combining the advanced experimental techniques neutron reflectivity and quartz crystal microbalance with dissipation monitoring, a mechanistic drug delivery model for LL-37-loaded cubosomes on bacterial mimicking bilayers was constructed. Moreover, the cubosome interaction with Escherichia coli was directly visualized using super-resolution laser scanning microscopy and cryogenic electron tomography. We could conclude that cubosomes loaded with LL-37 adsorbed and distorted bacterial membranes, providing evidence that the peptide-loaded cubosomes function as an antimicrobial unit.
  •  
2.
  • Nordström, Randi, 1986-, et al. (författare)
  • Degradable dendritic nanogels as carriers for antimicrobial peptides
  • 2019
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 554, s. 592-602
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we investigate degradable anionic dendritic nanogels (DNG) as carriers for antimicrobial peptides (AMPs). In such systems, the dendritic part contains carboxylic acid-based anionic binding sites for cationic AMPs, whereas linear poly(ethylene glycol) (PEG) chains form a shell for promotion of biological stealth. In order to clarify factors influencing membrane interactions of such systems, we here address effects of nanogel charge, cross-linking, and degradation on peptide loading/release, as well as consequences of these factors for lipid membrane interactions and antimicrobial effects. The DNGs were found to bind the AMPs LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW). For the smaller DPK-060 peptide, loading was found to increase with increasing nanogel charge density. For the larger LL-37, on the other hand, peptide loading was largely insensitive to nanogel charge density. In line with this, results on the secondary structure, as well as on the absence of stabilization from proteolytic degradation by the nanogels, show that the larger LL-37 is unable to enter into the interior of the nanogels. While 40–60% nanogel degradation occurred over 10 days, promoted at high ionic strength and lower cross-linking density/higher anionic charge content, peptide release at physiological ionic strength was substantially faster, and membrane destabilization not relying on nanogel degradation. Ellipsometry and liposome leakage experiments showed both free peptide and peptide/DNG complexes to cause membrane destabilization, indicated also by antimicrobial activities being comparable for nanogel-bound and free peptide. Finally, the DNGs were demonstrated to display low toxicity towards erythrocytes even at peptide concentrations of 100 µM.
  •  
3.
  • Nordström, Randi, et al. (författare)
  • Microgels as carriers of antimicrobial peptides – effects of peptide PEGylation
  • 2019
  • Ingår i: Colloids and Surfaces A. - : Elsevier BV. - 0927-7757 .- 1873-4359. ; 565, s. 8-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Delivery systems are likely to be central for the translation of antimicrobial peptides (AMPs) towards therapeutics. Addressing AMP interactions with microgel carriers, we here investigate how poly(ethylene glycol) conjugation ('PEGylation') of AMPs affect their loading and release to/from microgels, combining structural studies using nuclear magnetic resonance (NMR) with ellipsometry, circular dichroism spectroscopy (CD), and light scattering. Such studies demonstrate that poly(ethyl acrylate-co-methacrylic acid) microgels bind considerable amounts of the positively charged AMP KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) and its PEGylated variants KYE28-PEG48, PEG48-KYE28, and PEG24-KYE28-PEG24. Z-potential measurements indicate that KYE28 resides primarily inside the microgel core, and that localization of the PEGylated peptides is shifted towards the microgel corona. Furthermore, while all peptides are disordered in solution, CD measurements report on helix induction on microgel binding, particularly so for the PEGylated peptides. Addressing such conformational changes in more detail, NMR structural studies showed that peptide-microgel interactions are facilitated by a hydrophobic domain formed by the peptide after microgel binding, and with modulating electrostatic/salt bridge interaction between the positively charged peptide residues and negative microgel charges. As the microgels remain negatively charged also at high peptide load, membrane disruption and antimicrobial effects necessitates peptide release, demonstrated to be promoted by PEGylation and high ionic strength. Importantly, microgel loading, as well as peptide localization, conformation, and release, did not depend significantly on PEG conjugation site, but instead seems to be dictated by the PEG content of the peptide conjugates.
  •  
4.
  • Nordström, Randi (författare)
  • Polymeric Nanoparticles as Carriers for Antimicrobial Peptides : Factors Affecting Peptide and Membrane Interactions
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As resistance towards conventional antibiotics is becoming more pronounced, cationic antimicrobial peptides (AMPs) have received considerable attention as possible therapeutic alternatives. Thousands of potent AMPs occur in humans, animals, plants and fungi as a natural part of the immune system. However, there are several challenges with AMP therapeutics related to formulation and delivery. Examples include proteolytic sensitivity and serum protein binding, resulting in quick degradation, loss of activity and clearance. Therefore, it is important to find a suitable drug delivery system to meet these protection and delivery challenges. Micro-/nanogels are loosely crosslinked polymer colloids with high water content that can be made to trigger at a wide range of stimuli. They have shown promise as delivery systems for AMPs, as the aqueous environment they create allows the peptides to maintain their natural conformation, while their gel networks offer protection and triggered release. This thesis aims towards expanding the knowledge about degradable and non-degradable pH-responsive micro-/nanogels as carriers for AMPs.The results in this thesis show that factors relating to the drug delivery system (degradability, charge and crosslinker density), the surrounding media (pH and ionic strength) and the peptide properties (length, charge, PEGylation) all affect the peptide loading to, protection, release from and effect of AMP-loaded gels. Studies of the interaction of AMP-loaded microgels with bacteria-modelling liposomes and lipid bilayers have verified peptide effect after gel incorporation, as further demonstrated by in vitro studies on several bacterial strains. Neutron reflectometry provided detailed mechanistic information on the interaction between AMP-loaded gels and bacteria-modelling lipid bilayers, showing that the antimicrobial unit is the released peptide. All gels showed low, promising hemolysis and some gels could offer protection against proteolytic degradation of AMPs.In summary, non-degradable and degradable micro-/nanogels are versatile and interesting candidates as AMP carriers. Small changes in the gel composition or the AMP used can dramatically change the peptide loading, release and effect. It is therefore necessary to carefully consider and evaluate the optimal carrier for every AMP and the application at hand.
  •  
5.
  • Parra-Ortiz, Elisa, et al. (författare)
  • Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes
  • 2019
  • Ingår i: Journal of Colloid and Interface Science. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0021-9797 .- 1095-7103. ; 538, s. 404-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The exposure of biological membranes to reactive oxygen species (ROS) plays an important role in many pathological conditions such as inflammation, infection, or sepsis. ROS also modulate signaling processes and produce markers for damaged tissue. Lipid peroxidation, mainly affecting polyunsaturated phospholipids, results in a complex mixture of oxidized products, which may dramatically alter membrane properties. Here, we have employed a set of biophysical and surface-chemical techniques, including neutron and X-ray scattering, to study the structural, compositional, and stability changes due to oxidative stress on phospholipid bilayers composed of lipids with different degrees of polyunsaturation. In doing so, we obtained real-time information about bilayer degradation under in situ UV exposure using neutron reflectometry. We present a set of interrelated physicochemical effects, including gradual increases in area per molecule, head group and acyl chain hydration, as well as bilayer thinning, lateral phase separation, and defect formation leading to content loss upon membrane oxidation. Such effects were observed to depend on the presence of polyunsaturated phospholipids in the lipid membrane, suggesting that these may also play a role in the complex oxidation processes occurring in cells.
  •  
6.
  • Zhang, Yuning, et al. (författare)
  • Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics
  • 2019
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlag. - 1616-301X .- 1616-3028. ; 29:18
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel platform of dendritic nanogels is herein presented, capitalizing on the self-assembly of allyl-functional polyesters based on dendritic-linear-dendritic amphiphiles followed by simple cross-linking with complementary monomeric thiols via UV initiated off-stoichiometric thiol-ene chemistry. The facile approach enabled multigram creation of allyl reactive nanogel precursors, in the size range of 190–295 nm, being readily available for further modifications to display a number of core functionalities while maintaining the size distribution and characteristics of the master batch. The nanogels are evaluated as carriers of a spread of chemotherapeutics by customizing the core to accommodate each individual cargo. The resulting nanogels are biocompatible, displaying diffusion controlled release of cargo, maintained therapeutic efficacy, and decreased cargo toxic side effects. Finally, the nanogels are found to successfully deliver pharmaceuticals into a 3D pancreatic spheroids tumor model. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy