SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Novikova J.) srt2:(2015-2019)"

Sökning: WFRF:(Novikova J.) > (2015-2019)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Alonso-Blanco, Carlos, et al. (författare)
  • 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana
  • 2016
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 166:2, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes.
  •  
5.
  • Kawakatsu, Taiji, et al. (författare)
  • Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions
  • 2016
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 166:2, s. 492-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.
  •  
6.
  • Novikova, P. Y., et al. (författare)
  • Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1077-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection. © 2016 Nature America, Inc. All rights reserved.
  •  
7.
  • Jones, Iwan, et al. (författare)
  • Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury
  • 2018
  • Ingår i: Journal of Tissue Engineering and Regenerative Medicine. - : Hindawi Limited. - 1932-6254 .- 1932-7005. ; 12:4, s. E2099-E2109
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair.
  •  
8.
  • Louw, Andrew M, et al. (författare)
  • Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury
  • 2016
  • Ingår i: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 12:3, s. 643-653
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic injury to the central nervous system (CNS) is further complicated by an increase in secondary neuronal damage imposed by activated microglia/macrophages. MicroRNA-124 (miR-124) is responsible for mouse monocyte quiescence and reduction of their inflammatory cytokine production. We describe the formulation and ex vivo transfection of chitosan/miR-124 polyplex particles into rat microglia and the resulting reduction of reactive oxygen species (ROS) and TNF-α and lower expression of MHC-II. Upon microinjection into uninjured rat spinal cords, particles formed with Cy3-labeled control sequence RNA, were specifically internalized by OX42 positive macrophages and microglia cells. Alternatively particles injected in the peritoneum were transported by macrophages to the site of spinal cord injury 72h post injection. Microinjections of chitosan/miR-124 particles significantly reduced the number of ED-1 positive macrophages in the injured spinal cord. Taken together, these data present a potential treatment technique to reduce inflammation for a multitude of CNS neurodegenerative conditions.
  •  
9.
  • McGrath, Aleksandra M., et al. (författare)
  • Long-Term Effects of Fibrin Conduit with Human Mesenchymal Stem Cells and Immunosuppression after Peripheral Nerve Repair in a Xenogenic Model
  • 2018
  • Ingår i: Cell Medicine. - : SAGE Publications. - 2155-1790. ; 10, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Previously we showed that a fibrin glue conduit with human mesenchymal stem cells (hMSCs) and cyclosporine A (CsA) enhanced early nerve regeneration. In this study long term effects of this conduit are investigated. Methods: In a rat model, the sciatic nerve was repaired with fibrin conduit containing fibrin matrix, fibrin conduit containing fibrin matrix with CsA treatment and fibrin conduit containing fibrin matrix with hMSCs and CsA treatment, and also with nerve graft as control. Results: At 12 weeks 34% of motoneurons of the control group regenerated axons through the fibrin conduit. CsA treatment alone or with hMSCs resulted in axon regeneration of 67% and 64% motoneurons respectively. The gastrocnemius muscle weight was reduced in the conduit with fibrin matrix. The treatment with CsA or CsA with hMSCs induced recovery of the muscle weight and size of fast type fibers towards the levels of the nerve graft group. Discussion: The transplantation of hMSCs for peripheral nerve injury should be optimized to demonstrate their beneficial effects. The CsA may have its own effect on nerve regeneration.
  •  
10.
  • Novikova, Liudmila N., et al. (författare)
  • Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury
  • 2018
  • Ingår i: Acta Biomaterialia. - : Elsevier. - 1742-7061 .- 1878-7568. ; 66, s. 177-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinal cord injury (SCI) is often associated with scarring and cavity formation and therefore bridging strategies are essential to provide a physical substrate for axonal regeneration. In this study we investigated the effects of a biodegradable conduit made from trimethylene carbonate and c-caprolactone (TC) containing poly-p-dioxanone microfilaments (PDO) with longitudinal grooves on regeneration after SCI in adult rats. In vitro studies demonstrated that different cell types including astrocytes, meningeal fibroblasts, Schwann cells and adult sensory dorsal root ganglia neurons can grow on the TC and PDO material. For in vivo experiments, the TC/PDO conduit was implanted into a small 2-3 mm long cavity in the C3-C4 cervical segments immediately after injury (acute SCI) or at 2-5 months after initial surgery (chronic SCI). At 8 weeks after implantation into acute SCI, numerous 5HT-positive descending raphaespinal axons and sensory CGRP-positive axons regenerated across the conduit and were often associated with PDO microfilaments and migrated host cells. Implantation into chronically injured SCI induced regeneration mainly of the sensory CGRP-positive axons. Although the conduit had no effect on the density of OX42-positive microglial cells when compared with SCI control, the activity of GFAP-positive astrocytes was reduced. The results suggest that a TC/PDO conduit can support axonal regeneration after acute and chronic SCI even without addition of exogenous glial or stem cells.
  •  
11.
  • Wiberg, Rebecca, 1988-, et al. (författare)
  • A Morphological and Molecular Characterization of the Spinal Cord after Ventral Root Avulsion or Distal Peripheral Nerve Axotomy Injuries in Adult Rats
  • 2017
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 34:3, s. 652-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Retrograde cell death in sensory dorsal root ganglion cells following peripheral nerve injury is well established. However, available data regarding the underlying mechanism behind injury induced motoneuron death are conflicting. By comparing morphological and molecular changes in spinal motoneurons after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA) 7 and 14 days postoperatively, we aimed to gain more insight about the mechanism behind injury-induced motoneuron degeneration. Morphological changes in spinal cord were assessed by using quantitative immunohistochemistry. Neuronal degeneration was revealed by decreased immunostaining for microtubuleassociated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Significant motoneuron atrophy was already observed at 7 days post-injury, independently of injury type. Immunostaining for ED1 reactive microglia was significantly elevated in all experimental groups, as well as the astroglial marker glial fibrillary acidic protein (GFAP). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of genes involved in programmed cell death including caspase-3, caspase-8, and related death receptors TRAIL-R, tumor necrosis factor (TNF)-R, and Fas following VRA. In contrast, following PNA, caspase-3 and the death receptor gene expression levels did not differ from the control, and there was only a modest increased expression of caspase-8. Moreover, the altered gene expression correlated with protein changes. These results show that the spinal motoneurons reacted in a similar fashion with respect to morphological changes after both proximal and distal injury. However, the increased expression of caspase-3, caspase-8, and related death receptors after VRA suggest that injury- induced motoneuron degeneration is mediated through an apoptotic mechanism, which might involve both the intrinsic and the extrinsic pathways.
  •  
12.
  • Wiberg, Rebecca, et al. (författare)
  • Evaluation of apoptotic pathways in dorsal root ganglion neurons following peripheral nerve injury
  • 2018
  • Ingår i: NeuroReport. - : Lippincott Williams & Wilkins. - 0959-4965 .- 1473-558X. ; , s. 779-785
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral nerve injuries induce significant sensory neuronal cell death in the dorsal root ganglia (DRG); however, the role of specific apoptotic pathways is still unclear. In this study, we performed peripheral nerve transection on adult rats, after which the corresponding DRGs were harvested at 7, 14, and 28 days after injury for subsequent molecular analyses with quantitative reverse transcription-PCR, western blotting, and immunohistochemistry. Nerve injury led to increased levels of caspase-3 mRNA and active caspase-3 protein in the DRG. Increased expression of caspase-8, caspase-12, caspase-7, and calpain suggested that both the extrinsic and the endoplasmic reticulum (ER) stress-mediated apoptotic pathways were activated. Phosphorylation of protein kinase R-like ER kinase further implied the involvement of ER-stress in the DRG. Phosphorylated protein kinase R-like ER kinase was most commonly associated with isolectin B4 (IB4)-positive neurons in the DRG and this may provide an explanation for the increased susceptibility of these neurons to die following nerve injury, likely in part because of an activation of the ER-stress response.
  •  
13.
  • Wiberg, Rebecca, 1988-, et al. (författare)
  • Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury
  • 2015
  • Ingår i: PLOS ONE. - San Francisco : Public Library Science. - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy