SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Onipchenko V. G.) srt2:(2015-2019)"

Sökning: WFRF:(Onipchenko V. G.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Thomas, H. J.D., et al. (författare)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
3.
  • Elumeeva, Tatiana G., et al. (författare)
  • Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions?
  • 2018
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 29:4, s. 715-725
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsMycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter-specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient-stressed ecosystems? LocationTeberda State Biosphere Reserve, northwest Caucasus, Russia. MethodsWe measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities. ResultsForb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability. ConclusionsIn alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR. Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient-limited herbaceous plant communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy