SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Oonk M. H. M.) srt2:(2010-2014)"

Search: WFRF:(Oonk M. H. M.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • van Weeren, R. J., et al. (author)
  • Lofar low-band antenna observations of the 3C 295 and boötes fields: Source counts and ultra-steep spectrum sources
  • 2014
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 793:2, s. art. 82-
  • Journal article (peer-reviewed)abstract
    • We present Low Frequency Array (LOFAR) Low Band observations of the Bootes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam(-1), making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg(2). From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (alpha
  •  
2.
  • Oonk, J. B. R., et al. (author)
  • Discovery of carbon radio recombination lines in absorption towards Cygnus A
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 437:4, s. 3506-3515
  • Journal article (peer-reviewed)abstract
    • We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33–57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10−4, a line width of 10 km s−1 and a velocity of +4 km s−1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ∼ 110 K and density ne ∼ 0.06 cm−3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10−4 for a 4 km s−1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10−4 for the peak optical depth of these lines for a 4 km s−1 channel width.
  •  
3.
  • Asgekar, A., et al. (author)
  • LOFAR detections of low-frequency radio recombination lines towards Cassiopeia A
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 551
  • Journal article (peer-reviewed)abstract
    • Cassiopeia A was observed using the low-band antennas of the LOw Frequency ARray (LOFAR) with high spectral resolution. This allowed a search for radio recombination lines (RRLs) along the line-of-sight to this source. Five carbon alpha RRLs were detected in absorption between 40 and 50 MHz with a signal-to-noise ratio of >5 from two independent LOFAR data sets. The derived line velocities (v(LSR) similar to -50 km s(-1)) and integrated optical depths (similar to 13 s(-1)) of the RRLs in our spectra, extracted over the whole supernova remnant, are consistent within each LOFAR data set and with those previously reported. For the first time, we are able to extract spectra against the brightest hotspot of the remnant at frequencies below 330 MHz. These spectra show significantly higher (15-80 percent) integrated optical depths, indicating that there is small-scale angular structure of the order of similar to 1 pc in the absorbing gas distribution over the face of the remnant. We also place an upper limit of 3 x 10(-4) on the peak optical depths of hydrogen and helium RRLs. These results demonstrate that LOFAR has the desired spectral stability and sensitivity to study faint recombination lines in the decameter band.
  •  
4.
  • Morabito, L. K., et al. (author)
  • Discovery of Carbon Radio Recombination Lines in M82
  • 2014
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 795:2, s. Art. no. L33-
  • Research review (peer-reviewed)abstract
    • Carbon radio recombination lines (RRLs) at low frequencies (less than or similar to 500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with the Low Frequency Array in the frequency range of 48-64 MHz. This is the first extragalactic detection of RRLs from a species other than hydrogen, and below 1 GHz. Since the carbon RRLs are not detected individually, we cross-correlated the observed spectrum with a template spectrum of carbon RRLs to determine a radial velocity of 219 km s(-1). Using this radial velocity, we stack 22 carbon-alpha transitions from quantum levels n = 468-508 to achieve an 8.5 sigma detection. The absorption line profile exhibits a narrow feature with peak optical depth of 3x10(-3) and FWHM of 31 km s(-1). Closer inspection suggests that the narrow feature is superimposed on a broad, shallow component. The total line profile appears to be correlated with the 21 cm Hi line profile reconstructed from Hi absorption in the direction of supernova remnants in the nucleus. The narrow width and centroid velocity of the feature suggests that it is associated with the nuclear starburst region. It is therefore likely that the carbon RRLs are associated with cold atomic gas in the direction of the nucleus of M82.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view