SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ott Martin 1974) srt2:(2022)"

Sökning: WFRF:(Ott Martin 1974) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aufschnaiter, Andreas, et al. (författare)
  • Fließbandfertigung von Atmungskettenkomplexen in Mitochondrien : Assembly line production of respiratory chain complexes in mitochondria
  • 2022
  • Ingår i: BioSpektrum. - : Springer Science and Business Media LLC. - 0947-0867 .- 1868-6249. ; 28:4, s. 366-369
  • Forskningsöversikt (refereegranskat)abstract
    • A key function of mitochondria consists of energy conversion, performed with the help of the respiratory chain and the ATP synthase. Biogenesis of these essential molecular machines requires expression of nuclear and mitochondrially encoded genes. We describe our current understanding how these processes are coordinated and how they are organized in specific areas of the inner membrane to facilitate the assembly of these sophisticated complexes.
  •  
2.
  • Dickinson, Q., et al. (författare)
  • Multi-omic integration by machine learning (MIMaL)
  • 2022
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 38:21, s. 4908-4918
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances in technologies allow for measuring the abundances of RNA, proteins, lipids and metabolites. These highly complex datasets reflect the states of the different layers in a biological system. Multi-omics is the integration of these disparate methods and data to gain a clearer picture of the biological state. Multi-omic studies of the proteome and metabolome are becoming more common as mass spectrometry technology continues to be democratized. However, knowledge extraction through the integration of these data remains challenging. Results: Connections between molecules in different omic layers were discovered through a combination of machine learning and model interpretation. Discovered connections reflected protein control (ProC) over metabolites. Proteins discovered to control citrate were mapped onto known genetic and metabolic networks, revealing that these protein regulators are novel. Further, clustering the magnitudes of ProC over all metabolites enabled the prediction of five gene functions, each of which was validated experimentally. Two uncharacterized genes, YJR120W and YDL157C, were accurately predicted to modulate mitochondrial translation. Functions for three incompletely characterized genes were also predicted and validated, including SDH9, ISC1 and FMP52. A website enables results exploration and also MIMaL analysis of user-supplied multi-omic data.
  •  
3.
  • Diessl, Jutta, 1989-, et al. (författare)
  • Manganese-driven CoQ deficiency
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species. Across phylae, excess manganese disrupts energy metabolism by unclear mechanisms. Here, Diessl et al. report that failure of mitochondrial bioenergetics upon manganese overload is due to mismetallation of a diiron enzyme crucial for CoQ biosynthesis
  •  
4.
  • Rzepka, Magdalena, 1992, et al. (författare)
  • Incorporation of reporter genes into mitochondrial DNA in budding yeast
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Many aspects of mitochondrial gene expression are still unknown, which can be attributed to limitations in molecular tools. Here, we present a protocol to introduce reporter genes into the mitochondrial genome of budding yeast, Saccharomyces cerevisiae. Mitochondrially encoded reporter constructs can be used to interrogate various aspects of mitochondrial gene expression. The power of this technique is exemplified by a mitochondrially encoded nanoluciferase, which allows to monitor levels of mitochondrial translation under a variety of growth conditions.
  •  
5.
  • Saini, P. K., et al. (författare)
  • The PSI+ prion modulates cytochrome c oxidase deficiency caused by deletion of COX12
  • 2022
  • Ingår i: Molecular Biology of the Cell. - 1059-1524 .- 1939-4586. ; 33:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytochrome c oxidase (CcO) is a pivotal enzyme of the mitochondrial respiratory chain, which sustains bioenergetics of eukaryotic cells. Cox12, a peripheral subunit of CcO oxidase, is required for full activity of the enzyme, but its exact function is unknown. Here experimental evolution of a Saccharomyces cerevisiae.cox12 strain for similar to 300 generations allowed to restore the activity of CcO oxidase. In one population, the enhanced bioenergetics was caused by a A375V mutation in the cytosolic AAA+ disaggregase Hsp104. Deletion or overexpression of HSP104 also increased respiration of the Delta cox12 ancestor strain. This beneficial effect of Hsp104 was related to the loss of the [PSI+] prion, which forms cytosolic amyloid aggregates of the Sup35 protein. Overall, our data demonstrate that cytosolic aggregation of a prion impairs the mitochondrial metabolism of cells defective for Cox12. These findings identify a new functional connection between cytosolic proteostasis and biogenesis of the mitochondrial respiratory chain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy