SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Outeiro Tiago. F) srt2:(2015-2019)"

Sökning: WFRF:(Outeiro Tiago. F) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Gustafsson, Gabriel, et al. (författare)
  • Secretion and uptake of α-synuclein via extracellular vesicles in cultured cells
  • 2018
  • Ingår i: Cellular and molecular neurobiology. - : Springer Science and Business Media LLC. - 0272-4340 .- 1573-6830. ; 38:8, s. 1539-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson’s disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1–2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.
  •  
4.
  • Richter, Katharina N., et al. (författare)
  • Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy
  • 2018
  • Ingår i: EMBO Journal. - : WILEY. - 0261-4189 .- 1460-2075. ; 37:1, s. 139-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA. Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.
  •  
5.
  • Gustafsson, Gabriel (författare)
  • Alpha-Synuclein Oligomers : Cellular Mechanisms and Aspects of Antibody Treatment
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), aggregated α-synuclein deposit inside cells within the brain. Smaller soluble α-synuclein aggregates, oligomers, are present both intra- and extracellularly. The α-synuclein oligomers are known to be particularly harmful, although the underlying neurotoxic mechanisms are not fully understood. The aim of this thesis was to investigate the pathogenic roles of α-synuclein oligomers and the possibility to target such species with antibody treatment.Passive immunotherapy with α-synuclein antibodies can lead to reduced pathology and ameliorated symptoms in transgenic mice. However, it remains unknown whether the antibodies are taken up by cells or whether they act extracellularly. In Paper I, we assessed cellular internalization of various α-synuclein monoclonal antibodies. The oligomer selective mAb47 displayed the highest uptake, which was promoted by the extracellular presence of α-synuclein.Alpha-synuclein aggregates can be found in both neurons and glial cells, but the pathogenic role of glial deposits has only been sparsely investigated. In Paper II, co-cultures of neurons and glia were exposed to α-synuclein oligomers. The astrocytes in the cultures rapidly accumulated oligomers, which were only partially degraded by lysosomes. The sustained intracellular α-synuclein deposits were associated with mitochondrial stress reactions in the astrocytes. In Paper III, we sought to explore whether the astrocytic pathology induced by α-synuclein oligomers could be ameliorated by antibody treatment. Pre-incubation of oligomers with mAb47 promoted α-synuclein clearance, reduced astrocytic accumulation and rescued cells from mitochondrial stress. We could demonstrate that binding of the antibody to its antigen in the extracellular space was crucial for these effects to occur.The progressive pathology in PD is believed to be driven by cell-to-cell spreading of α-synuclein aggregates, potentially via exosomes and other extracellular vesicles (EVs). In Paper IV, we found that either fusing α-synuclein to a non-physiological protein tag or introducing the PD-causing A53T mutation directed α-synuclein towards EV secretion. Also, EV-associated α-synuclein was particularly prone to induce toxicity in recipient cells.In conclusion, this thesis sheds new light on the cellular dysfunction related to α-synuclein pathology and on how the underlying pathogenic processes may be targeted by antibody treatment.  
  •  
6.
  • Gustafsson, Gabriel, et al. (författare)
  • Cellular Uptake of alpha-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of alpha-Synuclein and Mediated via Fc gamma Receptors
  • 2017
  • Ingår i: Cellular and molecular neurobiology. - : Springer Science and Business Media LLC. - 0272-4340 .- 1573-6830. ; 37:1, s. 121-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunotherapy targeting aggregated alpha-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other alpha-synucleinopathies. We have developed alpha-synuclein oligomer/protofibril selective antibodies that reduce toxic alpha-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective alpha-synuclein antibodies, linear epitope monoclonal alpha-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, alpha-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing alpha-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fc gamma receptors were targeted and we then found that blockage of Fc gamma RI and Fc gamma RIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular alpha-synuclein and mediated via Fc gamma receptors. Altogether, our finding lend further support to the belief that alpha-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic alpha-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of alpha-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.
  •  
7.
  • Szegő, Éva M., et al. (författare)
  • Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 28:1, s. 6-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-synuclein (aSyn) accumulates in intracellular inclusions in synucleinopathies, but the molecular mechanisms leading to disease are unclear. We identify the 10 kDa heat shock protein (HSP10) as a mediator of aSyn-induced mitochondrial impairments in striatal synaptosomes. We find an age-associated increase in the cytosolic levels of HSP10, and a concomitant decrease in the mitochondrial levels, in aSyn transgenic mice. The levels of superoxide dismutase 2, a client of the HSP10/HSP60 folding complex, and synaptosomal spare respiratory capacity are also reduced. Overexpression of HSP10 ameliorates aSyn-associated mitochondrial dysfunction and delays aSyn pathology in vitro and in vivo. Altogether, our data indicate that increased levels of aSyn induce mitochondrial deficits, at least partially, by sequestering HSP10 in the cytosol and preventing it from acting in mitochondria. Importantly, these alterations manifest first at presynaptic terminals. Our study not only provides mechanistic insight into synucleinopathies but opens new avenues for targeting underlying cellular pathologies. Szegő et al. identify HSP10 as a modulator of alpha-synuclein-induced mitochondrial impairment in striatal synaptosomes. Age-associated increase in the cytosolic and decrease in mitochondrial levels of HSP10 results in a reduction in the levels of SOD2 and of synaptosomal ATP production on demand. HSP10 overexpression delays alpha-synuclein pathology both in vitro and in vivo.
  •  
8.
  • Wu, Jia-Zhen, et al. (författare)
  • Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy
  • 2019
  • Ingår i: Translational Neurodegeneration. - : Springer Science and Business Media LLC. - 2047-9158. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson's disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity.Results: In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice.Conclusions: Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ingelsson, Martin (2)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Kelly, Daniel (1)
Vertessy, Beata G. (1)
visa fler...
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Liu, Fang (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Nàgy, Péter (1)
Kahan, Thomas (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Sehlin, Dag, 1976- (1)
Möller, Christer (1)
Lannfelt, Lars (1)
Sörelius, Karl, 1981 ... (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Backman, Lars (1)
Yan, Hong (1)
Swärd, Karl (1)
Nilsson, Per (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
De Milito, Angelo (1)
Zhang, Wei (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Lunds universitet (4)
Stockholms universitet (2)
Linköpings universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
visa fler...
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Högskolan i Halmstad (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy