SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Owen C.J.) srt2:(2005-2009)"

Sökning: WFRF:(Owen C.J.) > (2005-2009)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baumjohann, W., et al. (författare)
  • Dynamics of thin current sheets : Cluster observations
  • 2007
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:6, s. 1365-1389
  • Forskningsöversikt (refereegranskat)abstract
    • The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models. and looks for these signatures in Cluster data from two events. For both events transient magnetic si-natures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of J(y) and the corresponding field-aligned currents Event I covers a pseudo-breakup, developing only at high latitudes. First, a thin (H approximate to 2000Km approximate to 2 rho(i), with pi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H approximate to 1000-2000 km approximate to 1-2 rho(i)), crossed about 30 min later, is found to be active. with fast earthward ion flow bursts (300-600 km/s) and simultaneous large amplitude fluctuations (delta B/B similar to 1). In the quiet CS the current density J(y) is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300-600 km/s), observed during the active period. maximizes near or at the CS center. During the active phase of Event I no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active period. While the overall partial derivative Bz/partial derivative t is too weak to accelerate ions up to the observed velocities, short duration partial derivative B-z/partial derivative t can produce the azimuthal electric field requested to account for the observed ion flow bursts. The corresponding large amplitude perturbations are shown to move eastward. which suggests that the reduction in the tail current could be achieved via a series of eastward traveling partial dipolarisations/CD. The second event is much more active than the first one. The observed flapping of the CS corresponds to an azimuthally propagating wave. A reversal in the proton flow velocity, from 1000 to + 1000 km/s, is measured by CODIF. The overall flow reversal, the associated change in the sign of B-z and the relationship between B-x and B-y suggest that the spacecraft are moving with respect to an X-line and its associated Hall-structure. Yet, a simple tailward retreat of a large-scale X-line cannot account for all the observations, since several flow reversals are observed. These quasi-periodic flow reversals can also be associated with an azimuthal motion of the low frequency oscillations. Indeed, at the beginning of the interval B-y varies rapidly along the Y direction; the magnetic signature is three-dimensional and essentially corresponds to a structure of filamentary field-aligned current, moving eastward at similar to 200 km/s. The transverse size of the structure is similar to 1000 km. Similar structures are observed before and after. Thesefilamentary structures are consistent with an eastward propagation of an azimuthal modulation associated with a current system J(y), J(x). During Event 1, signatures of filamentary field-aligned current structures are also observed, in association with modulations of J(y). Hence, for both events the structure of the magnetic fields and currents is three-dimensional.
  •  
2.
  • Borälv, E., et al. (författare)
  • Correlation between ground-based observations of substorm signatures and magnetotail dynamics
  • 2005
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 23, s. 997-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a substorm event study combining Cluster and ground-based instrumentation. For this event ground-based magnetograms show a substorm onset and two separate substorm intensifications over Scandinavia, at the time located in the pre-midnight sector. During the substorm Cluster is located in the southern plasma sheet at a downtail distance of 18.5 Re. For all the substorm signatures seen on ground, corresponding plasma sheet drop-outs and re-entries of all or individual spacecraft of the Cluster constellation are observed. In general, plasma sheet drop-outs are assumed to be due to plasma sheet thinning/thickening and/or to magnetotail flapping. However, in the literature there has been some disagreement on both spatial and temporal characteristics of plasma sheet thinning and thickening during substorms. We therefore investigate the causes for the plasma sheet drop-outs for this event, which at first glance appears to show plasma sheet thinning at substorm onset, contradictory to the present standpoint in the literature.
  •  
3.
  • Lindstedt, T., et al. (författare)
  • Separatrix regions of magnetic reconnection at the magnetopause
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 27:10, s. 4039-4056
  • Tidskriftsartikel (refereegranskat)abstract
    • Using data from the four Cluster spacecraft we study the separatrix regions of magnetic reconnection sites at the dayside magnetopause under conditions when reconnection is occurring in the magnetopause current layer which separates magnetosheath plasma from the hot magnetospheric plasma sheet. We define the separatrix region as the region between the separatrix - the first field line opened by reconnection - and the reconnection jet (outflow region). We analyze eight separatrix region crossings on the magnetospheric side of the magnetopause and present detailed data for two of the events. We show that characteristic widths of the separatrix regions are of the order of ten ion inertial lengths at the magnetopause. Narrow separatrix regions with widths comparable to a few ion inertial lengths are rare. We show that inside the separatrix region there is a density cavity which sometimes has complex internal structure with multiple density dips. Strong electric fields exist inside the separatrix regions and the electric potential drop across the regions can be up to several kV. On the magnetosheath side of the region there is a density gradient with strong field aligned currents. The observed strong electric fields and currents inside the separatrix region can be important for a local energization of ions and electrons, particularly of ionospheric origin, as well as for magnetosphere-ionosphere coupling.
  •  
4.
  • Lui, A. T. Y., et al. (författare)
  • Breakdown of the frozen-in condition in the Earth's magnetotail
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A4, s. A04215-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We investigate in detail the breakdown of the frozen-in condition detected by Cluster at the downstream distance of similar to 19 R-E in the midnight sector of the magnetotail during a substorm expansion on 22 August 2001. It is found that the breakdown occurred ( 1) in a low-density environment with moderate to large proton plasma flow and significant fluctuations in electric and magnetic fields, ( 2) in regions with predominantly dissipation but occasionally dynamo effect, and ( 3) at times simultaneously at two Cluster satellites separated by more than 1000 km in both X- and Z-directions. Evaluation of the terms in the generalized Ohm's law indicates that the anomalous resistivity contribution arising from field fluctuations during this event is the most significant, followed by the Hall, electron viscosity, and inertial contributions in descending order of importance. This result demonstrates for the first time from observations that anomalous resistivity from field fluctuations ( implying kinetic instabilities) can play a substantial role in the breakdown of the frozen-in condition in the magnetotail during substorm expansions. Consideration of several observed features in the breakdown regions indicates that the breakdown occurs in a turbulent site resembling observed features found in current disruption and dipolarization sites.
  •  
5.
  • Marchaudon, A., et al. (författare)
  • Simultaneous double star and cluster ftes observations on the dawnside flank of the magnetosphere
  • 2006
  • Ingår i: Eur Space Agency Spec Publ ESA SP. - 929092909X - 9789290929093 ; , s. 163-170
  • Konferensbidrag (refereegranskat)abstract
    • We present Cluster and Double Star-1 (TC-1) observations from a close magnetic conjunction on May 8, 2004. The five spacecraft were on the dawnside flank of the magnetosphere, with TC-1 located near the equatorial plane and Cluster at higher geographic latitudes in the southern hemisphere. TC-1, at its apogee, skimmed the magnetopause for almost 8 hours (between 08:00-16:00 UT). Flux Transfer Events (FTEs), moving southward/tailward from the reconnection site, were observed by TC-1 throughout almost all of the period. Cluster, travelling on a mainly dawn-dusk trajectory, crossed the magnetopause at around 10:30 UT in the same Magnetic Local Time (MLT) sector as TC-1 and remained close to the magnetopause boundary layer in the southern hemisphere. The four Cluster spacecraft observed FTEs for a period of 6.5 hours between 07:30 and 14:00 UT. From the properties of these FTEs, the reconnection site was located northward of both TC-1 and Cluster on the dawn flank of the magnetosphere. Reconnection occurred between draped magnetosheath and closed magnetospheric field lines. Despite variable interplanetary magnetic field (IMF) conditions and IMF-B z turnings, the IMF clock-angle remained greater than 70° and the location site appeared to remain relatively stable in position during the whole period. This result is in agreement with previous studies which reported that the dayside reconnection remained active for an IMF clock-angle greater than 70°. The simultaneous observation of FTEs at both Cluster and TC-1, separated by 2 hours in MLT, implies that the reconnection site on the magnetopause must have been extended over several hours in MLT. This event has been already presented in more details in [1].
  •  
6.
  • Nakamura, R., et al. (författare)
  • Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S16-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Cluster observations of a thin current sheet interval under the presence of a strong vertical bar B-Y vertical bar during a fast earthward flow interval between 1655 UT and 1703 UT on 17 August 2003. The strong vertical bar B-Y vertical bar in the tail could be associated with a strong IMF vertical bar B-Y vertical bar, but the large fluctuations in B-Y, not seen in the IMF, suggest that a varying reconnection rate causes a varying transport of B-Y-dominated magnetic flux and/or a change in B-Y due to the Hall-current system. During the encounter of the high-speed flow, an intense current layer was observed around 1655: 53 UT with a peak current density of 182 nA/m(2), the largest current density observed by the Cluster four-spacecraft magnetic field measurement in the magnetotail. The half width of this current layer was estimated to be similar to 290 km, which was comparable to the ion-inertia length. Its unique signature is that the strong current is mainly field-aligned current flowing close to the center of the plasma sheet. The event was associated with parallel heating of electrons with asymmetries, which suggests that electrons moving along the field lines can contribute to a strong dawn-to-dusk current when the magnetotail current sheet becomes sufficiently thin and active in a strong guide field case.
  •  
7.
  • Retinò, Alessandro, et al. (författare)
  • In situ evidence of magnetic reconnection in turbulent plasma
  • 2007
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 3:4, s. 235-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is a universal process leading to energy conversion in plasmas. It occurs in the Solar System, in laboratory plasmas and is important in astrophysics . Reconnection has been observed so far only at large-scale boundaries between different plasma environments . It is not known whether reconnection occurs and is important in turbulent plasmas where many small-scale boundaries can form. Solar and laboratory measurements as well as numerical simulations indicate such possibility. Here we report, for the first time, in situ evidence of reconnection in a turbulent plasma. The turbulent environment is the solar wind downstream of the Earths bow shock. We show that reconnection is fast and electromagnetic energy is converted into heating and acceleration of particles. This has significant implications for laboratory and astrophysical plasmas where both turbulence and reconnection should be common.
  •  
8.
  •  
9.
  • Runov, A., et al. (författare)
  • Observations of an active thin current sheet
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze observations of magnetotail current sheet dynamics during a substorm between 2330 and 2400 UT on 28 August 2005 when Cluster was in the plasma sheet at [-17.2, -4.49, 0.03] R-E (GSM) with the foot points near the IMAGE ground-based network. Observations from the Cluster spacecraft, ground-based magnetometers, and the IMAGE satellite showed that the substorm started in a localized region near midnight, expanding azimuthally. A thin current sheet with a thickness of less than 900 km and current density of about 30 nA/m(2) was observed during 5 min around the substorm onset. The thinning of the current sheet was accompanied by tailward plasma flow at a velocity of -700 km/s and subsequent reversal to earthward flow at V-x approximate to 500 km/s coinciding with a B-z turning from -5 to + 10 nT. The analysis of magnetic and electric fields behavior and particle distributions reveals signatures of impulsive (with similar to 1 min timescale) activations of the thin current sheet. These observations were interpreted in the framework of transient reconnection, although the data analysis reveals serious disagreements with the classical 2.5-D X line model.
  •  
10.
  • Vaivads, Andris, et al. (författare)
  • Source of whistler emissions at the dayside magnetopause
  • 2007
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:9, s. L09106-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of whistler emissions are common in the magnetosphere near the dayside magnetopause. We show that one of the major source regions for these emissions is magnetic field minima that form along magnetic flux tubes at high latitudes. Using multispacecraft Cluster observations we experimentally confirm for the first time the existence of the magnetic field minima at high latitudes and we show that whistler emissions propagate away from the magnetic field minima. The strongest whistler emissions are observed on the magnetospheric flux tubes that are newly opened due to the magnetic reconnection. These flux tubes still have a density of magnetospheric plasma, but part of the high energy magnetospheric electrons have already been lost from the flux tubes. The partial loss of high energy electrons most probably causes anisotropy in electron distributions at high energies which should be the source of whistler emissions. Whistler emissions on opened flux tubes disappear as soon as the plasma density of flux tubes increases due to the entering of magnetosheath ions. We speculate that whistler emissions can most probably be used to trace the dynamics of the first opened field lines and thus the dynamics of magnetic reconnection sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy