SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palermo Vincenzo) srt2:(2015-2019)"

Sökning: WFRF:(Palermo Vincenzo) > (2015-2019)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anagnostopoulos, George, et al. (författare)
  • Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:49, s. 43192-43202
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 μm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.
  •  
2.
  • Dell'Elce, Simone, et al. (författare)
  • 3D to 2D reorganization of silver-thiol nanostructures, triggered by solvent vapor annealing
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 10:48, s. 23018-23026
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-organic composites are of great interest for a wide range of applications. The control of their structure remains a challenge, one of the problems being a complex interplay of covalent and supramolecular interactions. This paper describes the self-assembly, thermal stability and phase transitions of ordered structures of silver atoms and thiol molecules spanning from the molecular to the mesoscopic scale. Building blocks of molecularly defined clusters formed from 44 silver atoms, each particle coated by a monolayer of 30 thiol ligands, are used as ideal building blocks. By changing solvent and temperature it is possible to tune the self-assembled 3D crystals of pristine nanoparticles or, conversely, 2D layered structures, with alternated stacks of Ag atoms and thiol monolayers. The study investigates morphological, chemical and structural stability of these materials between 25 and 300 °C in situ and ex situ at the nanoscale by combining optical and electronic spectroscopic and scattering techniques, scanning probe microscopies and density-functional theory (DFT) calculations. The proposed wet-chemistry approach is relatively cheap, easy to implement, and scalable, allowing the fabricated materials with tuned properties using the same building blocks.
  •  
3.
  • Durso, M., et al. (författare)
  • Biomimetic graphene for enhanced interaction with the external membrane of astrocytes
  • 2018
  • Ingår i: Journal of Materials Chemistry B. - : Royal Society of Chemistry (RSC). - 2050-7518 .- 2050-750X. ; 6:33, s. 5335-5342
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.
  •  
4.
  • Ferrari, A. C., et al. (författare)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
5.
  • Gazzano, Massimo, et al. (författare)
  • A robust, modular approach to produce graphene-MO X multilayer foams as electrodes for Li-ion batteries
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 11:12, s. 5265-5273
  • Tidskriftsartikel (refereegranskat)abstract
    • Major breakthroughs in batteries would require the development of new composite electrode materials, with a precisely controlled nanoscale architecture. However, composites used for energy storage are typically a disordered bulk mixture of different materials, or simple coatings of one material onto another. We demonstrate here a new technique to create complex hierarchical electrodes made of multilayers of vertically aligned nanowalls of hematite (Fe 2 O 3 ) alternated with horizontal spacers of reduced graphene oxide (RGO), all deposited on a 3D, conductive graphene foam. The RGO nanosheets act as porous spacers, current collectors and protection against delamination of the hematite. The multilayer composite, formed by up to 7 different layers, can be used with no further processing as an anode in Li-ion batteries, with a specific capacity of up to 1175 μA h cm -2 and a capacity retention of 84% after 1000 cycles. Our coating strategy gives improved cyclability and rate capacity compared to conventional bulk materials. Our production method is ideally suited to assemble an arbitrary number of organic-inorganic materials in an arbitrary number of layers.
  •  
6.
  • Kovtun, Alessandro, et al. (författare)
  • Accurate chemical analysis of graphene-based materials using X-ray photoelectron spectroscopy
  • 2019
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 143, s. 268-275
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple, fast and general protocol for quantitative analysis of X-ray photoelectron spectroscopy (XPS) data provides accurate estimations of chemical species in graphene and related materials (GRMs). XPS data are commonly used to estimate the quality of and defects in graphene and graphene oxide (GO), by comparing carbon and oxygen 1s XPS peaks, obtaining an O/C ratio. This approach, however, cannot be used in the presence of extraneous oxygen contamination. The protocol, based on quantitative line-shape analysis of C 1s signals, uses asymmetric pseudo- Voigt line-shapes (APV), in contrast to Gaussian-based approaches conventionally used in fitting XPS spectra, thus allowing better accuracy in quantifying C 1s contributions from graphitic carbon (sp2), defects (sp3 carbon), carbons bonded to hydroxyl and epoxy groups, and from carbonyl and carboxyl groups. The APV protocol was evaluated on GRMs with O/C ratios ranging from 0.02 to 0.30 with film thicknesses from monolayers to bulk-like (>30nm) layers and also applied to previously published data, showing better results compared to those from conventional XPS fitting protocols. Based uniquely on C 1s data, the APV protocol can quantify O/C ratio and the presence of specific functional groups in GRMs even on SiOx, substrates, or in samples containing water.
  •  
7.
  • Kovtun, Alessandro, et al. (författare)
  • Benchmarking of graphene-based materials: Real commercial products versus ideal graphene
  • 2019
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There are tens of industrial producers claiming to sell graphene and related materials (GRM), mostly as solid powders. Recently the quality of commercial GRM has been questioned, and procedures for GRM quality control were suggested using Raman Spectroscopy or Atomic Force Microscopy. Such techniques require dissolving the sample in solvents, possibly introducing artefacts. A more pragmatic approach is needed, based on fast measurements and not requiring any assumption on GRM solubility. To this aim, we report here an overview of the properties of commercial GRM produced by selected companies in Europe, USA and Asia. We benchmark: (A) size, (B) exfoliation grade and (C) oxidation grade of each GRM versus the ones of 'ideal' graphene and, most importantly, versus what reported by the producer. In contrast to previous works, we report explicitly the names of the GRM producers and we do not re-dissolve the GRM in solvents, but only use techniques compatible with industrial powder metrology. A general common trend is observed: Products having low defectivity (%sp 2 bonds >95%) feature low surface area (<200 m 2 g -1 ), while highly exfoliated GRM show a lower sp 2 content, demonstrating that it is still challenging to exfoliate GRM at industrial level without adding defects.
  •  
8.
  • Kovtun, Alessandro, et al. (författare)
  • Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 11:11, s. 22780-22787
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of clean, pure water is a major challenge for the future of our society. 2-Dimensional nanosheets of GO seem promising as nanoporous adsorbent or filters for water purification; however, their processing in macroscopic filters is challenging, and their cost vs. standard polymer filters is too high. Here, we describe a novel approach to combine graphene oxide (GO) sheets with commercial polysulfone (PSU) membranes for improved removal of organic contaminants from water. The adsorption physics of contaminants on the PSU-GO composite follows Langmuir and Brunauer–Emmett–Teller (BET) models, with partial swelling and intercalation of molecules in between the GO layers. Such a mechanism, well-known in layered clays, has not been reported previously for graphene or GO. Our approach requires minimal amounts of GO, deposited directly on the surface of the polymer, followed by stabilization using microwaves or heat. The purification efficiency of the PSU-GO composites is significantly improved vs. benchmark commercial PSU, as demonstrated by the removal of two model contaminants, rhodamine B and ofloxacin. The excellent stability of the composite is confirmed by extensive (100 hours) filtration tests in commercial water cartridges.
  •  
9.
  • Maccaferri, Giulio, et al. (författare)
  • Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples
  • 2019
  • Ingår i: Sensors and Actuators, B: Chemical. - : Elsevier BV. - 0925-4005. ; 281, s. 739-745
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene oxide modified screen-printed electrodes have been tested as amperometric sensors for morphine determination. The results demonstrate that the arising of electrocatalytic processes ascribable to the graphene coating, combined with the use of a suitable cleaning procedure, allow the sensor to achieve higher sensitivity (2.61 nA ppb−1) and lower limit of detection (2.5 ppb) with respect to those reported in the literature for similar devices. Due to very low detection limit found, the device is suitable to detect the presence of morphine in urine samples after a very simple and rapid pre-treatment of the matrix, allowing the removal of interfering species affecting the voltammetric responses. Tests performed in synthetic urine samples demonstrate that the presence of the electrocatalytic coating is mandatory in resolving the peak due to morphine oxidation in respect to uric acid. The sensor proposed is, thus, suitable to detect this drug even at concentration values below the cut-off levels defined by European and American regulations. These results allow us to propose the sensor for screening tests in portable devices, to be applied in systematic controls of drug abuses, e.g. in drivers and in men at work
  •  
10.
  • Marsden, A. J., et al. (författare)
  • Electrical percolation in graphene-polymer composites
  • 2018
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 5:3
  • Forskningsöversikt (refereegranskat)abstract
    • Electrically conductive composites comprising polymers and graphene are extremely versatile and have a wide range of potential applications. The conductivity of these composites depends on the choice of polymer matrix, the type of graphene filler, the processing methodology, and any post-production treatments. In this review, we discuss the progress in graphene-polymer composites for electrical applications. Graphene filler types are reviewed, the progress in modelling these composites is outlined, the current optimal composites are presented, and the example of strain sensors is used to demonstrate their application.
  •  
11.
  • Pierleoni, Davide, et al. (författare)
  • Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:13, s. 11242-11250
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of polymer-based membranes for gas separation is currently limited by the Robeson limit, stating that it is impossible to have high gas permeability and high gas selectivity at the same time. We describe the production of membranes based on the ability of graphene oxide (GO) and poly(ethyleneimine) (PEI) multilayers to overcome such a limit. The PEI chains act as molecular spacers in between the GO sheets, yielding a highly reproducible, periodic multilayered structure with a constant spacing of 3.7 nm, giving a record combination of gas permeability and selectivity. The membranes feature a remarkable gas selectivity (up to 500 for He/CO 2 ), allowing to overcome the Robeson limit. The permeability of these membranes to different gases depends exponentially on the diameter of the gas molecule, with a sieving mechanism never obtained in pure GO membranes, in which a size cutoff and a complex dependence on the chemical nature of the permeant is typically observed. The tunable permeability, the high selectivity, and the possibility to produce coatings on a wide range of polymers represent a new approach to produce gas separation membranes for large-scale applications.
  •  
12.
  • Pierleoni, Davide, et al. (författare)
  • Structure and sieving mechanism of high selective graphene-based membranes
  • 2018
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1981
  • Konferensbidrag (refereegranskat)abstract
    • Graphene oxide was used as charge able to confer high selectivity to the final product. A self-assembling technique, namely layer-by-layer has been developed to stratify graphene-based coating on polymeric films; this coating is composed by nanolayers of graphene oxide alternated with polymers, bonded each other by electrostatic forces. Permeability measurement on layered Matrimid®, a commercial polyimide, showed incredibly high selectivity values to small particle mixtures, as O2, CO2, He and H2. Through simple post-treatments the selective performance was also improved, as demonstration of potentiality of the well-ordered bi-dimensional system: improvement on the coating would make this material one of the viable solution for industrial separations, e.g. hydrogen purification in sustainable energy production. A further investigation on similar structures obtained by other strategies shall demonstrate the peculiar mechanism occurring in this material for high selective performance.
  •  
13.
  • Posati, Tamara, et al. (författare)
  • Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:3, s. 4839-4847
  • Tidskriftsartikel (refereegranskat)abstract
    • Water purification technologies possibly based on eco-sustainable, low cost, and multifunctional materials are being intensively pursued to resolve the current water scarcity and pollution. In this scenario, polysulfone hollow porous granules (PS-HPGs) prepared from scraps of the industrial production of polysulfone hollow fiber membranes were recently introduced as adsorbents and filtration materials for water and air treatment. Here, we report the functionalization of PS-HPGs with polydopamine (PD) nanoparticles for the preparation of a new versatile and efficient adsorbent material, namely, PSPD-HPGs. The in situ growth of PD under mild alkaline oxidative polymerization allowed us to stably graft PD on polysulfone granules. Enhanced removal efficiency of ofloxacin, an antibiotic drug, with an improvement up to 70% with respect to the pristine PS-HPGs, and removal of Zn(II) and Ni(II) were also observed after PD modification. Remarkably, removal of Cu(II) ions with an efficiency up to 80% was observed for PSPD-HPGs, whereas no adsorption was found for the PD-free precursor. Collectively, these data show that modification with a biocompatible polymer such as PD provides a simple and valuable tool to enlarge the field of application of polysulfone hollow granules for water remediation from both organic and metal cation contaminants.
  •  
14.
  • Scidà, A., et al. (författare)
  • Application of graphene-based flexible antennas in consumer electronic devices
  • 2018
  • Ingår i: Materials Today. - : Elsevier BV. - 1369-7021 .- 1873-4103. ; 21:3, s. 223-230
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the fabrication and characterization of Near-Field Communication (NFC) devices based on highly flexible, carbon-based antennas composed of stacked graphene multilayers. This material features a high value of conductivity (4.20 * 10 5 S/m) comparable to monocrystalline graphite, but is much more flexible and processable. We first studied the replacement of metal with carbon antennas using computer modeling, to select the best design. Then we manufactured several devices to be used according to the communication protocol ISO/IEC 15693. The inductance of the G-paper antennas was tested before and after hundreds of thousands of bending cycles at bending radii of 45 and 90 mm. During bending the self-resonance frequency and inductance peak showed minimal variation and the resistance at 1 MHz changed from 33.09 Ω to 34.18 Ω outperforming standard, commercial metallic antennas. The devices were successfully tested by exchanging data with a smartphone and other commercial NFC readers, matching the performance of standard, commercial metallic antennas. The graphene antennas could be deposited on different standard polymeric substrates or on textiles. Smart cards, flexible NFC tags and wearable NFC bracelets were prepared in this way to be used in electronic keys, business cards and other typical NFC applications.
  •  
15.
  • Xia, Zhenyuan, 1983, et al. (författare)
  • Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide
  • 2019
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:24, s. 15122-15130
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade, electrochemical exfoliation of graphite has aroused great interest from both academia and industry for mass production of graphene sheets. Electrochemically exfoliated graphene oxide (EGO) features a much better tunability than chemically EGO, or even than graphene obtained with ultrasonic exfoliation. Chemical and electrical properties of EGO can be modified extensively, thanks to its step-controllable oxidation process, varying the electrolytes and/or the applied potential. It is thus possible, using tunable electrochemical oxidation, to produce low-defect EGO sheets, featuring both good electric conductivity and good dispersibility in common solvents (e.g., acetonitrile or isopropanol). This greatly facilitates its application in several fields, for example, in flexible electronics. In this work, we correlate the dispersion behavior of EGO with its chemical properties using the relative Hansen solubility parameter, zeta potential values, X-ray photoemission spectroscopy, and Raman analysis. A surface morphology study by atomic force microscopy and transmission electron microscopy analyses also reveals that EGO sheets are multiple structures of (partially oxidized) graphene bilayers. Conductive EGO films could be easily prepared by vacuum filtration on different substrates, obtaining electrical conductivity values of up to ∼104 S/m with no need for further reduction procedures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy