SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palmgren R.) srt2:(2020-2023)"

Search: WFRF:(Palmgren R.) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Petkevicius, K., et al. (author)
  • TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis. The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.
  •  
2.
  •  
3.
  • Borrega, M., et al. (author)
  • Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers
  • 2022
  • In: Materials. - : MDPI AG. - 1996-1944. ; 15:21
  • Journal article (peer-reviewed)abstract
    • The transition to sustainable, biodegradable, and recyclable materials requires new sources of cellulose fibers that are already used in large volumes by forest industries. Oat and barley straws provide interesting alternatives to wood fibers in lightweight material applications because of their similar chemical composition. Here we investigate processing and material forming concepts, which would enable strong fiber network structures for various applications. The idea is to apply mild pretreatment processing that could be distributed locally so that the logistics of the raw material collection could be made efficient. The actual material production would then combine foam-forming and hot-pressing operations that allow using all fractions of fiber materials with minimal waste. We aimed to study the technical features of this type of processing on a laboratory scale. The homogeneity of the sheet samples was very much affected by whether the raw material was mechanically refined or not. Straw fibers did not form a bond spontaneously with one another after drying the sheets, but their effective bonding required a subsequent hot pressing operation. The mechanical properties of the formed materials were at a similar level as those of the conventional wood-fiber webs. In addition to the technical aspects of materials, we also discuss the business opportunities and system-level requirements of using straw as an alternative source of lignocellulosic fibers. 
  •  
4.
  • Chapman, Elizabeth A., et al. (author)
  • Perennials as Future Grain Crops : Opportunities and Challenges
  • 2022
  • In: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Journal article (peer-reviewed)abstract
    • Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
  •  
5.
  •  
6.
  •  
7.
  • Ruiz, Mario, 1984, et al. (author)
  • Extensive transcription mis-regulation and membrane defects in AdipoR2-deficient cells challenged with saturated fatty acids
  • 2021
  • In: Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981. ; 1866:4
  • Journal article (peer-reviewed)abstract
    • How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.
  •  
8.
  • Sellberg, M, et al. (author)
  • -A cross-sectional study of clinical learning environments across four undergraduate programs using the undergraduate clinical education environment measure
  • 2021
  • In: BMC medical education. - : Springer Science and Business Media LLC. - 1472-6920. ; 21:1, s. 258-
  • Journal article (peer-reviewed)abstract
    • BackgroundThe clinical learning environment (CLE) influences students’ achievement of learning outcomes and the development of their professional behaviors. However, CLEs are not always optimal for learning because of clinical productivity expectations and a lack of support from supervisors. The purpose of this study was to describe and compare students’ perceptions of their CLEs across four undergraduate programs.MethodsThis study is cross-sectional. In total, 735 students who were registered in the medical, nursing, physiotherapy, and speech-language pathology (SLP) programs were invited to participate. Data were collected using an online survey, which included demographics and the Undergraduate Clinical Education Environment Measure (UCEEM). The UCEEM consists of 26 items congregated into two overarching dimensions—experiential learning and social participation—with four subscales: opportunities to learn in and through work and quality of supervision, preparedness for student entry, workplace interaction patterns and student inclusion, and equal treatment.ResultsIn total 280 students (median age 28; range: 20–52; 72% females) returned the questionnaire. The mean total UCEEM score was 98.3 (SD 18.4; range: 91–130), with physiotherapy students giving the highest scores and medical students the lowest. The mean scores for the dimensions experiential learning and social participation for all the students were 62.8 (SD 13.6; range 59–85) and 35.5 (SD 6.2; range 13–45), respectively. Medical students rated the lowest for all subscales. The items receiving the highest ratings concerned equal treatment, whereas those receiving the lowest ratings concerned supervisors’ familiarity with the learning objectives. There were few statistically significant differences between the semesters within each program.ConclusionsThe students generally hold positive perceptions toward their CLEs. However, the students from the medical and nursing programs rated their learning environment lower than did the students from the physiotherapy and SLP programs. Importantly, in several aspects, the medical students provided significantly lower ratings for their CLE compared with the students from the other programs. The medical students’ low ratings for their supervisors’ familiarity with the learning objectives underscore the need to ensure that the prerequisites for optimal supervision are met.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view