SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parachin Nadia Skorupa) srt2:(2020-2021)"

Sökning: WFRF:(Parachin Nadia Skorupa) > (2020-2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almqvist, Henrik, et al. (författare)
  • Muconic Acid Production Using Engineered Pseudomonas putida KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:24, s. 8097-8106
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial lignin such as kraft lignin is an abundant feedstock for renewable chemicals and materials. In this study, a process was developed for depolymerization of kraft lignin followed by an upgrading separation step and further bioconversion of the obtained monoaromatic compounds to muconic acid. First, industrial kraft lignin, Indulin AT, was processed into a guaiacol-rich stream using base-catalyzed depolymerization. This stream was subsequently upgraded using liquid-liquid extraction and evaporation to yield a more concentrated and less inhibitory stream, adapted for bioconversion. Finally, guaiacol was quantitatively converted to muconic acid through bioconversion using an engineered Pseudomonas putida strain containing cytochrome P450 and ferredoxin reductase for guaiacol assimilation and deletion of the native catBC genes for muconic acid production. Isomerization of muconic acid in a fermentation medium depending on pH was also studied.
  •  
2.
  • Gonçalves, Carolyne Caetano, et al. (författare)
  • Bioprospecting Microbial Diversity for Lignin Valorization : Dry and Wet Screening Methods
  • 2020
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.
  •  
3.
  • Heitor Colombelli Manfrão-Netto, João, et al. (författare)
  • Metabolic engineering of Pseudomonas putida for production of vanillylamine from lignin-derived substrates
  • 2021
  • Ingår i: Microbial Biotechnology. - : Wiley. - 1751-7907 .- 1751-7915. ; 14:6, s. 2448-2462
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-cell bioconversion of technical lignins using Pseudomonas putida strains overexpressing amine transaminases (ATAs) has the potential to become an eco-efficient route to produce phenolic amines. Here, a novel cell growth-based screening method to evaluate the in vivo activity of recombinant ATAs towards vanillylamine in P. putida KT2440 was developed. It allowed the identification of the native enzyme Pp-SpuC-II and ATA from Chromobacterium violaceum (Cv-ATA) as highly active towards vanillylamine in vivo. Overexpression of Pp-SpuC-II and Cv-ATA in the strain GN442ΔPP_2426, previously engineered for reduced vanillin assimilation, resulted in 94- and 92-fold increased specific transaminase activity, respectively. Whole-cell bioconversion of vanillin yielded 0.70 ± 0.20 mM and 0.92 ± 0.30 mM vanillylamine, for Pp-SpuC-II and Cv-ATA, respectively. Still, amine production was limited by a substantial re-assimilation of the product and formation of the by-products vanillic acid and vanillyl alcohol. Concomitant overexpression of Cv-ATA and alanine dehydrogenase from Bacillus subtilis increased the production of vanillylamine with ammonium as the only nitrogen source and a reduction in the amount of amine product re-assimilation. Identification and deletion of additional native genes encoding oxidoreductases acting on vanillin are crucial engineering targets for further improvement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy