SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pearson Ewan R.) srt2:(2015-2019)"

Sökning: WFRF:(Pearson Ewan R.) > (2015-2019)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Preiss, David, et al. (författare)
  • Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes
  • 2017
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902. ; 19:3, s. 356-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To investigate, in the Carotid Atherosclerosis: Metformin for Insulin Resistance (CAMERA) trial (NCT00723307), whether the influence of metformin on the glucagon-like peptide (GLP)-1 axis in individuals with and without type 2 diabetes (T2DM) is sustained and related to changes in glycaemia or weight, and to investigate basal and post-meal GLP-1 levels in patients with T2DM in the cross-sectional Diabetes Research on Patient Stratification (DIRECT) study. Materials and methods: CAMERA was a double-blind randomized placebo-controlled trial of metformin in 173 participants without diabetes. Using 6-monthly fasted total GLP-1 levels over 18months, we evaluated metformin's effect on total GLP-1 with repeated-measures analysis and analysis of covariance. In the DIRECT study, we examined active and total fasting and 60-minute post-meal GLP-1 levels in 775 people recently diagnosed with T2DM treated with metformin or diet, using Student's t-tests and linear regression. Results: In CAMERA, metformin increased total GLP-1 at 6 (+20.7%, 95% confidence interval [CI] 4.7-39.0), 12 (+26.7%, 95% CI 10.3-45.6) and 18months (+18.7%, 95% CI 3.8-35.7), an overall increase of 23.4% (95% CI 11.2-36.9; P <.0001) vs placebo. Adjustment for changes in glycaemia and adiposity, individually or combined, did not attenuate this effect. In the DIRECT study, metformin was associated with higher fasting active (39.1%, 95% CI 21.3-56.4) and total GLP-1 (14.1%, 95% CI 1.2-25.9) but not post-meal incremental GLP-1. These changes were independent of potential confounders including age, sex, adiposity and glycated haemoglobin. Conclusions: In people without diabetes, metformin increases total GLP-1 in a sustained manner and independently of changes in weight or glycaemia. Metformin-treated patients with T2DM also have higher fasted GLP-1 levels, independently of weight and glycaemia.
  •  
2.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Statistical power considerations in genotype-based recall randomized controlled trials
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Randomized controlled trials (RCT) are often underpowered for validating gene-treatment interactions. Using published data from the Diabetes Prevention Program (DPP), we examined power in conventional and genotype-based recall (GBR) trials. We calculated sample size and statistical power for gene-metformin interactions (vs. placebo) using incidence rates, gene-drug interaction effect estimates and allele frequencies reported in the DPP for the rs8065082 SLC47A1 variant, a metformin transported encoding locus. We then calculated statistical power for interactions between genetic risk scores (GRS), metformin treatment and intensive lifestyle intervention (ILI) given a range of sampling frames, clinical trial sample sizes, interaction effect estimates, and allele frequencies; outcomes were type 2 diabetes incidence (time-to-event) and change in small LDL particles (continuous outcome). Thereafter, we compared two recruitment frameworks: GBR (participants recruited from the extremes of a GRS distribution) and conventional sampling (participants recruited without explicit emphasis on genetic characteristics). We further examined the influence of outcome measurement error on statistical power. Under most simulated scenarios, GBR trials have substantially higher power to observe gene-drug and gene-lifestyle interactions than same-sized conventional RCTs. GBR trials are becoming popular for validation of gene-treatment interactions; our analyses illustrate the strengths and weaknesses of this design.
  •  
3.
  • Corbin, Laura J., et al. (författare)
  • Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed phenotyping is required to deepen our understanding of the biological mechanisms behind genetic associations. In addition, the impact of potentially modifiable risk factors on disease requires analytical frameworks that allow causal inference. Here, we discuss the characteristics of Recall-by-Genotype (RbG) as a study design aimed at addressing both these needs. We describe two broad scenarios for the application of RbG: studies using single variants and those using multiple variants. We consider the efficacy and practicality of the RbG approach, provide a catalogue of UK-based resources for such studies and present an online RbG study planner.
  •  
4.
  • Dawed, Adem Y., et al. (författare)
  • Evidence-based prioritisation and enrichment of genes interacting with metformin in type 2 diabetes
  • 2017
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 60:11, s. 2231-2239
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: There is an extensive body of literature suggesting the involvement of multiple loci in regulating the action of metformin; most findings lack replication, without which distinguishing true-positive from false-positive findings is difficult. To address this, we undertook evidence-based, multiple data integration to determine the validity of published evidence. Methods: We (1) built a database of published data on gene-metformin interactions using an automated text-mining approach (n = 5963 publications), (2) generated evidence scores for each reported locus, (3) from which a rank-ordered gene set was generated, and (4) determined the extent to which this gene set was enriched for glycaemic response through replication analyses in a well-powered independent genome-wide association study (GWAS) dataset from the Genetics of Diabetes and Audit Research Tayside Study (GoDARTS). Results: From the literature search, seven genes were identified that are related to the clinical outcomes of metformin. Fifteen genes were linked with either metformin pharmacokinetics or pharmacodynamics, and the expression profiles of a further 51 genes were found to be responsive to metformin. Gene-set enrichment analysis consisting of the three sets and two more composite sets derived from the above three showed no significant enrichment in four of the gene sets. However, we detected significant enrichment of genes in the least prioritised category (a gene set in which their expression is affected by metformin) with glycaemic response to metformin (p = 0.03). This gene set includes novel candidate genes such as SLC2A4 (p = 3.24 x 10(-04)) and G6PC (p = 4.77 x 10(-04)). Conclusions/interpretation: We have described a semi-automated text-mining and evidence-scoring algorithm that facilitates the organisation and extraction of useful information about gene-drug interactions. We further validated the output of this algorithm in a drug-response GWAS dataset, providing novel candidate loci for gene-metformin interactions.
  •  
5.
  • Dawed, Adem Y., et al. (författare)
  • Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4) and organic cation transporter 1 (OCT1) (encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes : An IMI direct study
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 42:6, s. 1027-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Gastrointestinal adverse effects occur in 20–30% of patients with metformin-treated type 2 diabetes, leading to premature discontinuation in 5–10% of the cases. Gastrointestinal intolerance may reflect localized high concentrations of metformin in the gut. We hypothesized that reduced transport of metformin via the plasma membrane monoamine transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe gastrointestinal adverse effects. RESEARCH DESIGN AND METHODS The study included 286 severe metformin-intolerant and 1,128 metformin-tolerant individuals from the IMI DIRECT (Innovative Medicines Initiative: DIabetes REsearCh on patient straTification) consortium. We assessed the association of patient characteristics, concomitant medication, and the burden of mutations in the SLC29A4 and SLC22A1 genes on odds of intolerance. RESULTS Women (P < 0.001) and older people (P < 0.001) were more likely to develop metformin intolerance. Concomitant use of transporter-inhibiting drugs increased the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic regression model, the G allele at rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, P = 0.005). rs3889348 is the top cis-expression quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had reduced expression. Homozygous carriers of the G allele treated with transporter-inhibiting drugs had more than three times higher odds of intolerance compared with carriers of no G allele and not treated with inhibiting drugs (OR 3.23, P < 0.001). Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that the odds of intolerance were more than twice as high in individuals who carry three or more risk alleles compared with those carrying none (OR 2.15, P = 0.01). CONCLUSIONS These results suggest that intestinal metformin transporters and concomitant medications play an important role in the gastrointestinal adverse effects of metformin.
  •  
6.
  • Donnelly, Louise A., et al. (författare)
  • Rates of glycaemic deterioration in a real-world population with type 2 diabetes
  • 2018
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 61:3, s. 607-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: There is considerable variability in how diabetes progresses after diagnosis. Progression modelling has largely focused on 'time to failure' methods, yet determining a 'coefficient of failure' has many advantages. We derived a rate of glycaemic deterioration in type 2 diabetes, using a large real-world cohort, and aimed to investigate the clinical, biochemical, pharmacological and immunological variables associated with fast and slow rates of glycaemic deterioration. Methods: An observational cohort study was performed using the electronic medical records from participants in the Genetics of Diabetes Audit and Research in Tayside Study (GoDARTS). A model was derived based on an individual's observed HbA(1c) measures from the first eligible HbA(1c) after the diagnosis of diabetes through to the study end (defined as insulin initiation, death, leaving the area or end of follow-up). Each HbA(1c) measure was time-dependently adjusted for the effects of non-insulin glucose-lowering drugs, changes in BMI and corticosteroid use. GAD antibody (GADA) positivity was defined as GAD titres above the 97.5th centile of the population distribution. Results: The mean (95% CI) glycaemic deterioration for type 2 diabetes and GADA-positive individuals was 1.4 (1.3, 1.4) and 2.8 (2.4, 3.3) mmol/mol HbA(1c) per year, respectively. A younger age of diagnosis, lower HDL-cholesterol concentration, higher BMI and earlier calendar year of diabetes diagnosis were independently associated with higher rates of glycaemic deterioration in individuals with type 2 diabetes. The rate of deterioration in those diagnosed at over 70 years of age was very low, with 66% having a rate of deterioration of less than 1.1 mmol/mol HbA(1c) per year, and only 1.5% progressing more rapidly than 4.4 mmol/mol HbA(1c) per year. Conclusions/interpretation: We have developed a novel approach for modelling the progression of diabetes in observational data across multiple drug combinations. This approach highlights how glycaemic deterioration in those diagnosed at over 70 years of age is minimal, supporting a stratified approach to diabetes management.
  •  
7.
  • Dujic, Tanja, et al. (författare)
  • Effects of TCF7L2 rs7903146 variant on metformin response in patients with type 2 diabetes
  • 2019
  • Ingår i: Bosnian Journal of Basic Medical Sciences. - : Association of Basic Medical Sciences of FBIH. - 1512-8601 .- 1840-4812. ; 19:4, s. 368-374
  • Tidskriftsartikel (refereegranskat)abstract
    • The response to metformin, the most commonly used drug for the treatment of type 2 diabetes (T2D), is highly variable. The common variant rs7903146 C>T within the transcription factor 7-like 2 gene (TCF7L2) is the strongest genetic risk factor associated with T2D to date. In this study, we explored the effects of the TCF7L2 rs7903146 genotype on metformin response in T2D. The study included 86 newly diagnosed patients with T2D, incident users of metformin. Levels of fasting glucose, insulin, HbA1c, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and anthropometric parameters were measured prior to metformin therapy, and 6 and 12 months after the treatment. Genotyping of the TCF7L2 rs7903146 was performed by the Sequenom MassARRAY® iPLEX® platform. At baseline, the diabetes risk allele (T) showed an association with lower triglyceride levels (p = 0.037). After 12 months of metformin treatment, the T allele was associated with 25.9% lower fasting insulin levels (95% CI 10.9-38.3%, p = 0.002) and 29.1% lower HOMA-IR index (95% CI 10.1-44.1%, p = 0.005), after adjustment for baseline values. Moreover, the T allele was associated with 6.7% lower fasting glucose levels (95% CI 1.1-12.0%, p = 0.021), adjusted for baseline glucose and baseline HOMA-%B levels, after 6 months of metformin treatment. This effect was more pronounced in the TT carriers who had 16.8% lower fasting glucose levels (95% CI 7.0-25.6%, p = 0.002) compared to the patients with CC genotype. Our results suggest that the TCF7L2 rs7903146 variant affects markers of insulin resistance and glycemic response to metformin in newly diagnosed patients with T2D within the first year of metformin treatment.
  •  
8.
  • Ji, Yingjie, et al. (författare)
  • Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:1, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
  •  
9.
  • Rauh, Simone P, et al. (författare)
  • Predicting glycated hemoglobin levels in the non-diabetic general population : development and validation of the DIRECT-DETECT prediction model - a DIRECT study
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To develop a prediction model that can predict HbA1c levels after six years in the non-diabetic general population, including previously used readily available predictors.METHODS: Data from 5,762 initially non-diabetic subjects from three population-based cohorts (Hoorn Study, Inter99, KORA S4/F4) were combined to predict HbA1c levels at six year follow-up. Using backward selection, age, BMI, waist circumference, use of anti-hypertensive medication, current smoking and parental history of diabetes remained in sex-specific linear regression models. To minimize overfitting of coefficients, we performed internal validation using bootstrapping techniques. Explained variance, discrimination and calibration were assessed using R2, classification tables (comparing highest/lowest 50% HbA1c levels) and calibration graphs. The model was externally validated in 2,765 non-diabetic subjects of the population-based cohort METSIM.RESULTS: At baseline, mean HbA1c level was 5.6% (38 mmol/mol). After a mean follow-up of six years, mean HbA1c level was 5.7% (39 mmol/mol). Calibration graphs showed that predicted HbA1c levels were somewhat underestimated in the Inter99 cohort and overestimated in the Hoorn and KORA cohorts, indicating that the model's intercept should be adjusted for each cohort to improve predictions. Sensitivity and specificity (95% CI) were 55.7% (53.9, 57.5) and 56.9% (55.1, 58.7) respectively, for women, and 54.6% (52.7, 56.5) and 54.3% (52.4, 56.2) for men. External validation showed similar performance in the METSIM cohort.CONCLUSIONS/INTERPRETATION: In the non-diabetic population, our DIRECT-DETECT prediction model, including readily available predictors, has a relatively low explained variance and moderate discriminative performance, but can help to distinguish between future highest and lowest HbA1c levels. Absolute HbA1c values are cohort-dependent.
  •  
10.
  • Siddiqui, Moneeza K., et al. (författare)
  • A common missense variant of LILRB5 is associated with statin intolerance and myalgia
  • 2017
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 38:48, s. 3569-U31
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: A genetic variant in LILRB5 (leukocyte immunoglobulin-like receptor subfamily-B) (rs12975366: T > C: Asp247Gly) has been reported to be associated with lower creatine phosphokinase (CK) and lactate dehydrogenase (LDH) levels. Both biomarkers are released from injured muscle tissue, making this variant a potential candidate for susceptibility to muscle-related symptoms. We examined the association of this variant with statin intolerance ascertained from electronic medical records in the GoDARTS study.Methods and results: In the GoDARTS cohort, the LILRB5 Asp247 variant was associated with statin intolerance (SI) phenotypes; one defined as having raised CK and being non-adherent to therapy [odds ratio (OR) 1.81; 95% confidence interval (CI): 1.34–2.45] and the other as being intolerant to the lowest approved dose of a statin before being switched to two or more other statins (OR 1.36; 95% CI: 1.07–1.73). Those homozygous for Asp247 had increased odds of developing both definitions of intolerance. Importantly the second definition did not rely on CK elevations. These results were replicated in adjudicated cases of statin-induced myopathy in the PREDICTION-ADR consortium (OR1.48; 95% CI: 1.05–2.10) and for the development of myalgia in the JUPITER randomized clinical trial of rosuvastatin (OR1.35, 95% CI: 1.10–1.68). A meta-analysis across the studies showed a consistent association between Asp247Gly and outcomes associated with SI (OR1.34; 95% CI: 1.16–1.54).Conclusion: This study presents a novel immunogenetic factor associated with statin intolerance, an important risk factor for cardiovascular outcomes. The results suggest that true statin-induced myalgia and non-specific myalgia are distinct, with a potential role for the immune system in their development. We identify a genetic group that is more likely to be intolerant to their statins.
  •  
11.
  • Zhang, Chenghui, et al. (författare)
  • Circulating Tissue Factor-Positive Procoagulant Microparticles in Patients with Type 1 Diabetes
  • 2019
  • Ingår i: Diabetes, Metabolic Syndrome and Obesity. - : DOVE MEDICAL PRESS LTD. - 1178-7007. ; 12, s. 2819-2828
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To investigate the count of circulating tissue factor-positive (TF+) procoagulant microparticles (MPs) in patients with type 1 diabetes mellitus (T1DM).Methods: This case-control study included patients with T1DM and age and sex-matched healthy volunteers. The counts of phosphatidylserine-positive (PS+) MPs and TF(+)PS(+)MPs and the subgroups derived from different cell types were measured in the peripheral blood sample of the two groups using multicolor flow cytometric assay. We compared the counts of each MP between groups as well as the ratio of the TF(+)PS(+)MPs and PS(+)MPs (TF(+)PS(+)MPs/PS(+)MPs).Results: We recruited 36 patients with T1DM and 36 matched healthy controls. Compared with healthy volunteers, PS(+)MPs, TF(+)PS(+)MPs and TF(+)PS(+)MPs/PS(+)MPs were elevated in patients with T1DM (PS(+)MPs: 1078.5 +/- 158.08 vs 686.84 +/- 122.04/mu L, P <0.001; TF(+)PS(+)MPs: 202.10 +/- 47.47 vs 108.33 +/- 29.42/mu L, P <0.001; and TF(+)PS(+)MPs/PS(+)MPs: 0.16 +/- 0.04 vs 0.19 +/- 0.05, P = 0.004), mostly derived from platelet, lymphocytes and endothelial cells. In the subgroup analysis, the counts of total and platelet TF(+)PS(+)MPs were increased in patients with diabetic retinopathy (DR) and with higher HbA1c, respectively.Conclusion: Circulating TF(+)PS(+)MPs and those derived from platelet, lymphocytes and endothelial cells were elevated in patients with T1DM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy