SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pearson Johansson Joel 1984 ) "

Sökning: WFRF:(Pearson Johansson Joel 1984 )

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
2.
  • Camacho-Neves, Yssavo, et al. (författare)
  • Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using TARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.
  •  
3.
  • Dhawan, Suhail, et al. (författare)
  • A Uniform Type Ia Supernova Distance Ladder with the Zwicky Transient Facility : Absolute Calibration Based on the Tip of the Red Giant Branch Method
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The current Cepheid-calibrated distance ladder measurement of H0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H0 = 76.94 ± 6.4 km s−1 Mpc−1, an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia.
  •  
4.
  • Dimitriadis, Georgios, et al. (författare)
  • SN 2021zny : an early flux excess combined with late-time oxygen emission suggests a double white dwarf merger event
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:1, s. 1162-1183
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a photometric and spectroscopic analysis of the ultraluminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from similar to 5.3 h after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multiwavelength coverage from a variety of ground-and space-based telescopes, and is concluded with a nebular spectrum similar to 10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (M-B = -19.95 mag), the slow decline (delta m(15)(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities, and the presence of significant unburned material above the photosphere. However, a fluxexcess for the first similar to 1.5 d after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behaviour, while its + 313 d spectrum shows prominent [OI] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with similar to 0 . 04 M-? of H/He-poor circumstellar material at a distance of similar to 10(12) cm, while the low ionization state of the late-time spectrum re veals lo w abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.
  •  
5.
  • Dwomoh, Arianna M., et al. (författare)
  • Evaluating the Consistency of Cosmological Distances Using Supernova Siblings in the Near-infrared
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 965:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of supernova (SN) siblings, supernovae with the same host galaxy, is an important avenue for understanding and measuring the properties of Type Ia SN Ia light curves (LCs). Thus far, sibling analyses have mainly focused on optical LC data. Considering that LCs in the near-infrared (NIR) are expected to be better standard candles than those in the optical, we carry out the first analysis compiling SN siblings with only NIR data. We perform an extensive literature search of all SN siblings and find six sets of siblings with published NIR photometry. We calibrate each set of siblings ensuring they are on homogeneous photometric systems, fit the LCs with the SALT3-NIR and SNooPy models, and find median absolute differences in μ values between siblings of 0.248 and 0.186 mag, respectively. To evaluate the significance of these differences beyond measurement noise, we run simulations that mimic these LCs and provide an estimate for uncertainty on these median absolute differences of ∼0.052 mag, and we find that, statistically, our analysis rules out the nonexistence of intrinsic scatter in the NIR at the 99% level. When comparing the same sets of SN siblings, we observe a median absolute difference in μ values between siblings of 0.177 mag when using optical data alone as compared to 0.186 mag when using NIR data alone. It is unclear if these results may be due to limited statistics or poor quality NIR data, all of which will be improved with the Nancy Grace Roman Space Telescope.
  •  
6.
  • Galbany, L., et al. (författare)
  • An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the Hubble constant (H0) using type Ia supernovae (SNe Ia) in the near-infrared (NIR) from the recently updated sample of SNe Ia in nearby galaxies with distances measured via Cepheid period-luminosity relations by the SH0ES project. We collected public near-infrared photometry of up to 19 calibrator SNe Ia and 57 SNe Ia in the Hubble flow (z > 0.01), and directly measured their peak magnitudes in the J- and H-band by Gaussian processes and spline interpolation. Calibrator peak magnitudes together with Cepheid-based distances were used to estimate the average absolute magnitude in each band, while Hubble-flow SNe were used to constrain the zero-point intercept of the magnitude–redshift relation. Our baseline result of H0 is 72.3 ± 1.4 (stat) ±1.4 (syst) km s−1 Mpc−1 in the J-band and 72.3 ± 1.3 (stat) ±1.4 (syst) km s−1 Mpc−1 in the H-band, where the systematic uncertainties include the standard deviation of up to 21 variations of the analysis, the 0.7% distance scale systematic from SH0ES Cepheid anchors, a photometric zero-point systematic, and a cosmic variance systematic. Our final measurement represents a measurement with a precision of 2.8% in both bands. Among all the analysis variants, the largest change in H0 comes from limiting the sample to those SNe from the CSP and CfA programs; they are noteworthy because they are the best calibrated, yielding H0 ∼ 75 km s−1 Mpc−1 in both bands. We explore applying stretch and reddening corrections to standardize SN Ia NIR peak magnitudes, and we demonstrate that they are still useful to reduce the absolute magnitude scatter and, which improves its standardization, at least up to the H-band. Based on our results, in order to improve the precision of the H0 measurement with SNe Ia in the NIR in the future, we would need to increase the number of calibrator SNe Ia, to be able to extend the Hubble–Lemaître diagram to higher redshift, and to include standardization procedures to help reduce the NIR intrinsic scatter.
  •  
7.
  • Goobar, Ariel, 1962-, et al. (författare)
  • Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:9, s. 1098-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
  •  
8.
  • Kool, Erik C., et al. (författare)
  • A radio-detected type Ia supernova with helium-rich circumstellar material
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 477-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.
  •  
9.
  • Kwok, Lindsey A., et al. (författare)
  • Ground-based and JWST Observations of SN 2022pul. II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type Ia Supernova
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 966:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 days postexplosion. Our combined spectrum continuously covers 0.4–14 μm and includes the first mid-infrared spectrum of a 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. A strong, broad, centrally peaked [Ne ii] line at 12.81 μm was previously predicted as a hallmark of "violent merger" SN Ia models, where dynamical interaction between two sub-MCh white dwarfs (WDs) causes disruption of the lower-mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the ejecta to reproduce the optical iron emission better, and add mass in the innermost region (<2000 km s−1) to account for the observed narrow [O i] λλ6300, 6364 emission. A violent WD–WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SNe Ia.
  •  
10.
  • Liu, Chang, et al. (författare)
  • SN 2022joj : A Peculiar Type Ia Supernova Possibly Driven by an Asymmetric Helium-shell Double Detonation
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 958:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of SN 2022joj, a peculiar Type Ia supernova discovered by the Zwicky Transient Facility. SN 2022joj exhibits an unusually red g ZTF - r ZTF color at early times and a rapid blueward evolution afterward. Around maximum brightness, SN 2022joj shows a high luminosity ( MgZTF,max similar or equal to-19.7 mag), a blue broadband color (g ZTF - r ZTF similar or equal to -0.2 mag), and shallow Si ii absorption lines, consistent with those of overluminous, SN 1991T-like events. The maximum-light spectrum also shows prominent absorption around 4200 angstrom, which resembles the Ti ii features in subluminous, SN 1991bg-like events. Despite the blue optical-band colors, SN 2022joj exhibits extremely red ultraviolet minus optical colors at maximum luminosity (u - v similar or equal to 0.6 mag and uvw1 - v similar or equal to 2.5 mag), suggesting a suppression of flux at similar to 2500-4000 angstrom. Strong C ii lines are also detected at peak. We show that these unusual spectroscopic properties are broadly consistent with the helium-shell double detonation of a sub-Chandrasekhar mass (M similar or equal to 1 M circle dot) carbon/oxygen white dwarf from a relatively massive helium shell (M s similar or equal to 0.04-0.1 M circle dot), if observed along a line of sight roughly opposite to where the shell initially detonates. None of the existing models could quantitatively explain all the peculiarities observed in SN 2022joj. The low flux ratio of [Ni ii] lambda 7378 to [Fe ii] lambda 7155 emission in the late-time nebular spectra indicates a low yield of stable Ni isotopes, favoring a sub-Chandrasekhar mass progenitor. The significant blueshift measured in the [Fe ii] lambda 7155 line is also consistent with an asymmetric chemical distribution in the ejecta, as is predicted in double-detonation models.
  •  
11.
  • Mörtsell, Edvard, et al. (författare)
  • Sensitivity of the Hubble Constant Determination to Cepheid Calibration
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 933:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated by the large observed diversity in the properties of extragalactic extinction by dust, we reanalyze the Cepheid calibration used to infer the Hubble constant, H0, from Type Ia supernovae, using Cepheid data in 19 Type Ia supernova host galaxies from Riess et al. and anchor data from Riess et al. Unlike the SH0ES team, we do not enforce a fixed universal color–luminosity relation to correct the Cepheid magnitudes. Instead, we focus on a data-driven method, where the optical colors and near-infrared magnitudes of the Cepheids are used to derive individual color–luminosity relations for each Type Ia supernova host and anchor galaxy. We present two different analyses, one based on Wesenheit magnitudes, resulting in H0 = 73.2 ± 1.3 km s−1 Mpc−1, a 4.2σ tension with the value inferred from the cosmic microwave background. In the second approach, we calibrate an individual extinction law for each galaxy, with noninformative priors using color excesses, yielding H0 = 73.9 ± 1.8 km s−1 Mpc−1, in 3.4σ tension with the Planck value. Although the two methods yield similar results, in the latter approach, the Hubble constants inferred from the individual Cepheid absolute distance calibrator galaxies range from H0 = 68.1 ± 3.5 km s−1 Mpc−1 to H0 = 76.7 ± 2.0 km s−1 Mpc−1. Taking the correlated nature of H0 inferred from individual anchors into account, and allowing for individual extinction laws, the Milky Way anchor is in 2.1–3.1 σ tension with the NGC 4258 and Large Magellanic Cloud anchors, depending on prior assumptions regarding the color–luminosity relations and the method used for quantifying the tension.
  •  
12.
  • Pearson Johansson, Joel, 1984- (författare)
  • Ground-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 960:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB = −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak B-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O i] λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Ca ii] λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Fe iii to Fe ii ionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T ≈ 500 K), combined with prominent [O i] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.
  •  
13.
  • Pierel, J. D. R., et al. (författare)
  • LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (SN Zwicky)
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, SN Zwicky) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle LensWatch (www.lenswatch.org) program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (less than or similar to 1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (less than or similar to 3.5 days), including the uncertainty from chromatic microlensing (similar to 1-1.5 days). Our lens models converge to an Einstein radius of theta(E) = 0.168 (+0.009)(-0.005) the smallest yet seen in a lensed SN system. The standard candle nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by similar to 1.7 (-0.6) (+0.8) mag and similar to 0.9 (-0.6) (+0.8) mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models.
  •  
14.
  • Schulze, Steve, 1980-, et al. (författare)
  • The complex circumstellar environment of supernova 2023ixf
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 627:8005
  • Tidskriftsartikel (refereegranskat)abstract
    • The early evolution of a supernova (SN) can reveal information about the environment and the progenitor star. When a star explodes in vacuum, the first photons to escape from its surface appear as a brief, hours-long shock-breakout flare1,2, followed by a cooling phase of emission. However, for stars exploding within a distribution of dense, optically thick circumstellar material (CSM), the first photons escape from the material beyond the stellar edge and the duration of the initial flare can extend to several days, during which the escaping emission indicates photospheric heating3. Early serendipitous observations2,4 that lacked ultraviolet (UV) data were unable to determine whether the early emission is heating or cooling and hence the nature of the early explosion event. Here we report UV spectra of the nearby SN 2023ixf in the galaxy Messier 101 (M101). Using the UV data as well as a comprehensive set of further multiwavelength observations, we temporally resolve the emergence of the explosion shock from a thick medium heated by the SN emission. We derive a reliable bolometric light curve that indicates that the shock breaks out from a dense layer with a radius substantially larger than typical supergiants.
  •  
15.
  • Shahbandeh, Melissa, et al. (författare)
  • JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6048-6060
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 μm) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 × 10−4 M⊙, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to ∼100–150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.
  •  
16.
  • Sharma, Yashvi, et al. (författare)
  • A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between -19.1 and -21, spectra having weak H ss and large Balmer ldecrements of similar to 7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3 sigma detections, with some SNe showing a reduction in the red wing of Ha, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of He I.5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29+(27)(21) Gpc(-3) yr(-1) for SNe Ia-CSM, which is similar to 0.02%-0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%-0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.
  •  
17.
  • Zsíros, Szanna, et al. (författare)
  • Serendipitous detection of the dusty Type IIL SN 1980K with JWST/MIRI
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:1, s. 155-168
  • Tidskriftsartikel (refereegranskat)abstract
    • We present mid-infrared (mid-IR) imaging of the Type IIL supernova (SN) 1980K with the JWST more than 40 yr post-explosion. SN 1980K, located in the nearby (D ≈ 7 Mpc) ‘SN factory’ galaxy NGC 6946, was serendipitously captured in JWST/MIRI images taken of the field of SN 2004et in the same galaxy. SN 1980K serves as a promising candidate for studying the transitional phase between young SNe and older SN remnants and also provides a great opportunity to investigate its the close environment. SN 1980K can be identified as a clear and bright point source in all eight MIRI filters from F560W up to F2550W. We fit analytical dust models to the mid-IR spectral energy distribution that reveal a large amount (Md ≈ 0.002 M⊙) of Si-dominated dust at Tdust≈150 K (accompanied by a hotter dust/gas component), and also computed numerical SED dust models. Radiative transfer modelling of a late-time optical spectrum obtained recently with Keck discloses that an even larger (∼0.24–0.58 M⊙) amount of dust is needed in order for selective extinction to explain the asymmetric line profile shapes observed in SN 1980K. As a conclusion, with JWST, we may see i) pre-existing circumstellar dust heated collisionally (or, partly radiatively), analogous to the equatorial ring of SN 1987A, or ii) the mid-IR component of the presumed newly-formed dust, accompanied by much more colder dust present in the ejecta (as suggested by the late-time the optical spectra).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy