SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedroarena Christine) "

Sökning: WFRF:(Pedroarena Christine)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belmeguenai, Amor, et al. (författare)
  • Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells
  • 2010
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 30:41, s. 13630-13643
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinaseA (PKA) and case in kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.
  •  
2.
  • Böhme, Rebecca, et al. (författare)
  • Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block
  • 2011
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 106:5, s. 2653-2661
  • Tidskriftsartikel (refereegranskat)abstract
    • Following hyperpolarizing inputs, many neurons respond with an increase in firing rate, a phenomenon known as rebound excitation. Rebound excitation has been proposed as a mechanism to encode and process inhibitory signals and transfer them to target structures. Activation of low-voltage-activated T-type calcium channels and the ensuing low-threshold calcium spikes is one of the mechanisms proposed to support rebound excitation. However, there is still not enough evidence that the hyperpolarization provided by inhibitory inputs, particularly those dependent on chloride ions, is adequate to deinactivate a sufficient number of T-type calcium channels to drive rebound excitation on return to baseline. Here, this issue was investigated in the deep cerebellar nuclear neurons (DCNs), which receive the output of the cerebellar cortex conveyed exclusively by the inhibitory Purkinje cells and are also known to display rebound excitation. Using cerebellar slices and whole cell recordings of large DCNs, we show that a novel piperidine-based compound that selectively antagonizes T-type calcium channel activity, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydropyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), suppressed rebound excitation elicited by current injection as well as by synaptic inhibition, whereas other electrophysiological properties of large DCNs were unaltered. Furthermore, TTA-P2 suppressed transient high-frequency rebounds found in DCNs with low-threshold spikes as well as the slow rebounds present in DCNs without low-threshold spikes. These findings demonstrate that chloride-dependent synaptic inhibition effectively triggers T-type calcium channel-mediated rebounds and that the latter channels may support slow rebound excitation in neurons without low-threshold spikes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy