SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peters Günther H.J.) srt2:(2020-2023)"

Sökning: WFRF:(Peters Günther H.J.) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuehlewein, Laura, et al. (författare)
  • Clinical phenotype and course of PDE6A-associated retinitis pigmentosa disease, characterized in preparation for a gene supplementation trial
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 138:12, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Treatment trials require sound knowledge on the natural course of disease. OBJECTIVE To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. EXPOSURES Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. MAIN OUTCOMES AND MEASURES Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). RESULTS Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). CONCLUSIONS AND RELEVANCE Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
  •  
2.
  • Kulakova, Alina, et al. (författare)
  • Chemometrics in Protein Formulation : Stability Governed by Repulsion and Protein Unfolding
  • 2023
  • Ingår i: Molecular Pharmaceutics. - 1543-8384. ; 20:6, s. 2951-2965
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.
  •  
3.
  • Mahapatra, Sujata, et al. (författare)
  • Self-Interactions of Two Monoclonal Antibodies : Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling
  • 2022
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 19:2, s. 508-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Using light scattering (LS), small-angle X-ray scattering (SAXS), and coarse-grained Monte Carlo (MC) simulations, we studied the self-interactions of two monoclonal antibodies (mAbs), PPI03 and PPI13. With LS measurements, we obtained the osmotic second virial coefficient, B22, and the molecular weight, Mw, of the two mAbs, while with SAXS measurements, we studied the mAbs' self-interaction behavior in the high protein concentration regime up to 125 g/L. Through SAXS-derived coarse-grained representations of the mAbs, we performed MC simulations with either a one-protein or a two-protein model to predict B22. By comparing simulation and experimental results, we validated our models and obtained insights into the mAbs' self-interaction properties, highlighting the role of both ion binding and charged patches on the mAb surfaces. Our models provide useful information about mAbs' self-interaction properties and can assist the screening of conditions driving to colloidal stability.
  •  
4.
  • Pohl, Christin, et al. (författare)
  • Electrostatics Drive Oligomerization and Aggregation of Human Interferon Alpha-2a
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 125:50, s. 13657-13669
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation is a common phenomenon in the field of protein therapeutics and can lead to function loss or immunogenic patient responses. Two strategies are currently used to reduce aggregation: (1) finding a suitable formulation, which is labor-intensive and requires large protein quantities, or (2) engineering the protein, which requires extensive knowledge about the protein aggregation pathway. We present a biophysical characterization of the oligomerization and aggregation processes by Interferon alpha-2a (IFNα-2a), a protein drug with antiviral and immunomodulatory properties. This study combines experimental high throughput screening with detailed investigations by small-angle X-ray scattering and analytical ultracentrifugation. Metropolis Monte Carlo simulations are used to gain insight into the underlying intermolecular interactions. IFNα-2a forms soluble oligomers that are controlled by a fast pH and concentration-dependent equilibrium. Close to the isoelectric point of 6, IFNα-2a forms insoluble aggregates which can be prevented by adding salt. We show that monomer attraction is driven mainly by molecular anisotropic dipole–dipole interactions that increase with increasing pH. Repulsion is due to monopole–monopole interactions and depends on the charge of IFNα-2a. The study highlights how combining multiple methods helps to systematically dissect the molecular mechanisms driving oligomer formation and to design ultimately efficient strategies for preventing detrimental protein aggregation.
  •  
5.
  • Pohl, Christin, et al. (författare)
  • pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly β-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-β-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/β proteins can natively assemble into fibrils.
  •  
6.
  • Teze, David, et al. (författare)
  • The Catalytic Acid-Base in GH109 Resides in a Conserved GGHGG Loop and Allows for Comparable α-Retaining and β-Inverting Activity in an N-Acetylgalactosaminidase from Akkermansia muciniphila
  • 2020
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 10:6, s. 3809-3819
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes active on glycosidic bonds are defined according to the stereochemistry of both substrates and products of the reactions they catalyze. The CAZy classification further assigns these enzymes into sequence-based families sharing a common stereochemistry for substrates (either α- or β-) and products (i.e., inverting or retaining mechanism). Here we describe the N-acetylgalactosaminidases AmGH109A and AmGH109B (i.e., GH109: glycoside hydrolase family 109) from the human gut symbiont Akkermansia muciniphila. Notably, AmGH109A displays α-retaining and β-inverting N-acetylgalactosaminidase activities with comparable efficiencies on natural disaccharides. This dual specificity could provide an advantage in targeting a broader range of host-derived glycans. We rationalize this discovery through bioinformatics, structural, mutational, and computational studies, unveiling a histidine residing in a conserved GGHGG motif as the elusive catalytic acid-base of the GH109 family.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy