SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pettersson Jocke) srt2:(2023)"

Sökning: WFRF:(Pettersson Jocke) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yucel, Yasemin Duygu, et al. (författare)
  • Powder-impregnated carbon fibers with lithium iron phosphate as positive electrodes in structural batteries
  • 2023
  • Ingår i: Composites Science And Technology. - : Elsevier Ltd. - 0266-3538 .- 1879-1050. ; 241
  • Tidskriftsartikel (refereegranskat)abstract
    • A structural battery is a multifunctional battery that can carry a load while storing energy. Structural batteries have been a cutting-edge research focus in the last decade and are mainly based on polyacrylonitrile (PAN)-carbon fibers (CFs). In this work, positive electrodes based on PAN-carbon fibers were manufactured with powder impregnation (siphon impregnation) technique using a water-based slurry containing lithium iron phosphate (LFP) as the active electrode material and the water-soluble binder polyethylene glycol (PEG). Different coating compositions, electrode-drying temperatures, and coating parameters were investigated to optimize the coating uniformity and the electrochemical performances. Scanning electron microscopy results showed that the electrode materials coat the CFs uniformly, conformably, and individually. Electrochemical characterization of pouch cells shows that the electrodes containing 6 wt% PEG dried at 140 °C have the best battery performance, delivering a first discharge capacity of 151 mAh g−1 and capacity retention higher than 80% after 100 cycles. Moreover, excellent capacity reversibility was achieved when the electrodes were cycled at multiple C-rates attesting to their stability. The results demonstrate that CFs perform excellently as current collectors in positive electrodes. 
  •  
2.
  • Arya, Mina, et al. (författare)
  • Enhancing Sustainability: Jute Fiber-Reinforced Bio-Based Sandwich Composites for Use in Battery Boxes
  • 2023
  • Ingår i: Polymers. - : Multidisciplinary Digital Publishing Institute (MDPI). - 2073-4360. ; 15:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. In this study, the mechanical behavior (tensile, flexural, and interlaminar shear properties) of plasma-treated jute composite laminates and the flexural behavior of jute fabric-reinforced sandwich composites were investigated. Non-woven mat fiber (MFC), jute fiber (JFC), dried jute fiber (DJFC), and plasma-treated jute fiber (TJFC) composite laminates, as well as sandwich composites consisting of jute fabric bio-based unsaturated polyester (UPE) composite as facing material and polyethylene terephthalate (PET70 and PET100) and polyvinyl chloride (PVC) as core materials were fabricated to compare their functional properties. Plasma treatment of jute composite laminate had a positive effect on some of the mechanical properties, which led to an improvement in Young’s modulus (7.17 GPa) and tensile strength (53.61 MPa) of 14% and 8.5%, respectively, as well as, in flexural strength (93.71 MPa) and flexural modulus (5.20 GPa) of 24% and 35%, respectively, compared to those of JFC. In addition, the results demonstrated that the flexural properties of jute sandwich composites can be significantly enhanced by incorporating PET100 foams as core materials. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy