SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Picard P.) srt2:(2005-2009)"

Sökning: WFRF:(Picard P.) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Davidson, D. J., et al. (författare)
  • IRAK-4 mutation (Q293X): rapid detection and characterization of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells
  • 2006
  • Ingår i: J Immunol. ; 177:11, s. 8202-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Innate immunodeficiency has recently been reported as resulting from the Q293X IRAK-4 mutation with consequent defective TLR/IL-1R signaling. In this study we report a method for the rapid allele-specific detection of this mutation and demonstrate both cell type specificity and ligand specificity in defective IL-1R-associated kinase (IRAK)-4-deficient cellular responses, indicating differential roles for this protein in human PBMCs and primary dermal fibroblasts and in LPS, IL-1beta, and TNF-alpha signaling. We demonstrate transcriptional and post-transcriptional defects despite NF-kappaB signaling and intact MyD88-independent signaling and propose that dysfunctional complex 1 (IRAK1/TRAF6/TAK1) signaling, as a consequence of IRAK-4 deficiency, generates specific defects in MAPK activation that could underpin this patient's innate immunodeficiency. These studies demonstrate the importance of studying primary human cells bearing a clinically relevant mutation; they underscore the complexity of innate immune signaling and illuminate novel roles for IRAK-4 and the fundamental importance of accessory proinflammatory signaling to normal human innate immune responses and immunodeficiencies.
  •  
3.
  • Olofsson, Henrik, 1972, et al. (författare)
  • Profiling the EMBRACE tile beam using GPS satellite carriers
  • 2009
  • Ingår i: Proceedings of Science. - 1824-8039. ; 132, s. 253-257
  • Konferensbidrag (refereegranskat)abstract
    • All rights reserved. The L2C carriers of multiple GPS satellites have been used to trace out a nearly complete beam pattern out to 45 away from the main lobe centre for a horizontally mounted single EMBRACE tile. The beam was formed along its bore-sight direction, i.e., staring at the local sky zenith. The result is very close to design specifications although there is evidence for at least one side lobe rising above the achieved noise level. We have also used the older L2 carrier to estimate the system temperature, although an exact figure in addition requires knowledge of the aperture efficiency. © 2018 Sissa Medialab Srl.
  •  
4.
  • Mlynczak, Martin G., et al. (författare)
  • Energy transport in the thermosphere during the solar storms of April 2002
  • 2005
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 110:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic solar storm events of April 2002 deposited a large amount of energy into the Earth's upper atmosphere, substantially altering the thermal structure, the chemical composition, the dynamics, and the radiative environment. We examine the flow of energy within the thermosphere during this storm period from the perspective of infrared radiation transport and heat conduction. Observations from the SABER instrument on the TIMED satellite are coupled with computations based on the ASPEN thermospheric general circulation model to assess the energy flow. The dominant radiative response is associated with dramatically enhanced infrared emission from nitric oxide at 5.3 μm from which a total of ∼7.7 × 1023 ergs of energy are radiated during the storm. Energy loss rates due to NO emission exceed 2200 Kelvin per day. In contrast, energy loss from carbon dioxide emission at 15 μm is only ∼2.3% that of nitric oxide. Atomic oxygen emission at 63 μm is essentially constant during the storm. Energy loss from molecular heat conduction may be as large as 3.8% of the NO emission. These results confirm the “natural thermostat” effect of nitric oxide emission as the primary mechanism by which storm energy is lost from the thermosphere below 210 km.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy