SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pontér Simon) "

Sökning: WFRF:(Pontér Simon)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pontér, Simon, et al. (författare)
  • Chromium isotope ratio measurements in environmental matrices by MC-ICP-MS
  • 2016
  • Ingår i: Journal of Analytical Atomic Spectrometry. - 0267-9477 .- 1364-5544. ; 31:7, s. 1464-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • An analytical procedure consisting of high pressure/temperature acid digestion using an UltraCLAVE system and a one pass, single column matrix separation using DOWEX AG 1X8 anion exchange resin was applied to the determination of Cr concentrations and δ53Cr in chromites, soils, and biological matrices (epiphytic lichens and mosses) using a combination of ICP-SFMS and MC-ICP-MS. The overall reproducibility of the method was assessed by replicate preparation and Cr isotope ratio measurements performed by different operators in multiple analytical sessions over a few months and was found to be 0.11‰ (2σ). The accuracy was evaluated using commercially available reference materials for which measured data were compared with certified values (for Cr concentrations) and previously published results (for isotope data). The results demonstrate a uniform Cr isotope composition in soil depth profiles sampled in different urban environments. A strong negative correlation between δ53Cr and Cr concentrations in lichens and mosses indicates that airborne Cr from local anthropogenic source(s) is depleted in heavy isotopes.
  •  
2.
  • Pontér, Simon, et al. (författare)
  • Chromium isotope ratio measurements in environmental matrices by MC-ICP-MS
  • 2016
  • Ingår i: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 31:7, s. 1464-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • An analytical procedure consisting of high pressure/temperature acid digestion using an UltraCLAVE system and a one pass, single column matrix separation using DOWEX AG 1X8 anion exchange resin was applied to the determination of Cr concentrations and delta Cr-53 in chromites, soils, and biological matrices (epiphytic lichens and mosses) using a combination of ICP-SFMS and MC-ICP-MS. The overall reproducibility of the method was assessed by replicate preparation and Cr isotope ratio measurements performed by different operators in multiple analytical sessions over a few months and was found to be 0.11 parts per thousand (2 sigma). The accuracy was evaluated using commercially available reference materials for which measured data were compared with certified values (for Cr concentrations) and previously published results (for isotope data). The results demonstrate a uniform Cr isotope composition in soil depth profiles sampled in different urban environments. A strong negative correlation between delta Cr-53 and Cr concentrations in lichens and mosses indicates that airborne Cr from local anthropogenic source(s) is depleted in heavy isotopes.
  •  
3.
  • Pontér, Simon, et al. (författare)
  • Early diagenesis of uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 793
  • Tidskriftsartikel (refereegranskat)abstract
    • The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment's pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased >20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake.Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.
  •  
4.
  • Pontér, Simon, et al. (författare)
  • Evaluation of a Multi-Isotope Approach as a Complement to Concentration Data within Environmental Forensics
  • 2021
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy metal contamination was identified in groundwater monitoring wells surrounding a waste deposit facility at the Rönnskär Cu–Pb–Zn smelter in Skellefteå, Northern Sweden, as well as in brackish water and sediments from the nearby harbor. Following an investigative study of the surrounding area, brackish water from the Baltic Sea and sediments from a nearby harbor were also determined to be contaminated. This study investigated the ranges of isotopic compositions of four elements (Cd, Cu, Pb, and Zn) in smelter materials (ores, products, and waste) and polluted groundwater sediments of the affected area. The study’s objective was to evaluate the variability of the polluting source and identify possible isotope fractionation. This study further assesses the viability of using isotopic information to identify the source of the pollutant. These data were used in combination with multi-element screening analysis and multivariate statistical techniques. Expanding the number of elements utilized in isotope tracing empowers our abilities to decipher the source(s) and the extent of environmental exposure from contamination events related to mining and refining operations.
  •  
5.
  • Pontér, Simon (författare)
  • Isotope Ratio and Trace Element Measurements Using Inductively Coupled Plasma – Mass Spectrometry : Method Development and Applications in Environmental Forensics
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Environmental Forensics is a scientific methodology developed for identifying sources, the timing of release, and transport pathways for potentially hazardous environmental contaminants. It combines a variety of analytical methods with principles derived from disciplines such as chemistry, geology, geochemistry, hydrogeology, and statistics, with the purpose to provide objective scientific and legal conclusions on the source and/or time of a contaminant release. Instrumental development and refining separation schemes have allowed higher quality data to be obtained and played a major role in the recent progress of the field. The use of modern techniques such as inductively coupled plasma sector field mass spectrometry (ICP-SFMS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for trace and ultra-trace element concentrations and isotope ratio measurements provides Environmental Forensics with new opportunities. The work described in the present thesis has been focused on closing knowledge gaps in the field of Environmental Forensics, including analytical method development as well as processes- and source(s)t-tracing using multiple isotopes in environmental studies. Paper I is dedicated to the assessment of performance of double-focusing, sector field mass spectrometry (ICP-SFMS) for determination of analytes (including technology critical elements (TCE)) at ultra-trace levels in complex matrixes, with a special emphasis on the determination of Au, Ag, Ir, Os, Pd, Pt, Re, Rh, Ru, Sb, and Te. Instrumentation development was performed by optimization and testing different configurations of the ICP-SFMS introduction system as well as various sample preparations, pre-concentration, and matrix separation methods. Factors affecting instrumental sensitivity, contamination risks, reagent purity, spectral interferences, matrix effects, and analyte recovery are discussed. Optimized matrix specific methods were applied to a range of reference and control materials (riverine and brackish waters, seawater, whole blood, serum, and urine). Samples included brackish water and seawater from the Laptev Sea, venous blood, tap water, and snow samples collected in Luleå, northern Sweden. In Paper II an analytical procedure was developed, consisting of high pressure/temperature acid digestion using an UltraCLAVE system followed by a one pass, single column matrix separation allowing the first Cr isotope study in epiphytic lichens and mosses, as well as analysis of chromite and soils by ICP-SFMS and MC-ICP-MS. The overall reproducibility of the method, which was found to be ±0.11‰ (2σ), was assessed by replicate preparation and Cr isotope ratio measurements performed by different operators in multiple analytical sessions over a few months. Results indicated no correlation between soil concentrations and isotopic compositions (R2=0.2), while a strong negative correlation (R2=0.7) between Cr concentrations in lichens and mosses and δ53Cr signatures indicates airborne Cr contribution from local anthropogenic source(s) depleted in heavy isotopes. Chromium isotope data obtained for lichens and mosses indicate the potential of using this approach for tracing and quantifying airborne Cr pollution caused by stainless steel foundries.  Paper III evaluates heavy metal contamination in brackish water, groundwater, and sediments collected close to a deposit facility at the Rönnskär Cu–Pb–Zn smelter in Skellefteå, northern Sweden. This study investigates the ranges of isotopic compositions of four elements (Cd, Cu, Pb, and Zn) in smelter process materials (ores, products, and waste), as well as in polluted groundwater and sediments of the affected area. The study’s objective was to evaluate the isotope variability of the polluting source and identify possible isotope fractionation between a source and a sink. This study further assesses the viability of using isotopic information to identify the source of the pollutant in various matrices. Isotope composition data were used as a compliment to multi-element screening analysis and multivariate statistical techniques. Expanding the number of elements utilized in isotope tracing empowers our abilities to decipher the source(s) and the extent of environmental exposure from contamination events related to mining and refining operations. Results show clusters of elements with elevated concentrations and significant inter-element correlations that can be traced practically in all matrices tested (from dust samples to sediments), confirming a link between the source and the polluted environmental compartments. Differences in the relative mobility in the environment for different elements (shown in the example of Re and Mo distribution in sediments) may however affect the usefulness of the elemental ratios in reconstructing the extent and timing of pollution events. Among the isotopes evaluated in this study, radiogenic Pb and stable Zn isotope systems offer the most promising source identification in the area close to the smelter. However, temporal variability in the isotopic composition of the source adds complexity for the Pb isotopes. Numerous post-deposition fractionating processes alter the original source ratios for Cu, Zn, and to a lesser extent, Cd. At larger distances from the source, additional fractionation during element migration and dilution of source-specific signatures with background components makes source tracing more challenging. To fully realize the great promise offered by expanding the number of elements utilized in isotope tracing as a powerful way to decipher sources and fate of environmental exposure, a comprehensive evaluation of both source(s) and background variability, as well as post-depositional fractionation, needs to be an integral part of any Environmental Forensics investigation. Paper IV combines uranium (U) and other trace element concentrations with iron and uranium isotope measurements as a proxy to reconstruct historical changes of U release and accumulation in one tailings pond and two lakes (Mettä-Rakkurijärvi and Rakkurijärvi) receiving deep mine waters in northern Sweden, Kiruna. Uranium is deposited in lake sediments downstream of the mine, with elevated U concentrations in the surface sediments exceeding 55 mg kg-1, a >20-fold increase from the pre-industrial years. The distribution of anthropogenic U between the lakes does not follow the distribution of other contaminants reaching the system with mine waters, with a higher relative proportion of U accumulating in sediments of the second lake. Vertical concentration profiles for redox-sensitive elements as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. The isotopic signature of U in surface sediments (activity ratio AR=2.5) is far from that of secular equilibrium. These signatures are a function of time and weathering-induced fractionation, used here as a source signature of U originating in the deep groundwater in the mine. Linear regressions of inverse U concentration in water (dissolved, particulate, and total) versus AR reaffirms a simplified mixing situation with two isotopically distinct sources: 1) a natural source (low U concentration, AR 2.64), and 2) an anthropogenic source (high U concentration, AR ≈1.95). After mixing with mine water from the Rakkurijoki system, the AR of receiving Kalix River water decreases from 2.66 to 2.24. Monitoring data on the surface waters demonstrate the effects of the tributary waters of the Rakkurijoki systems as it discharges into the Kalix River, where the U concentration of the river downstream is more than doubled.  
  •  
6.
  • Rodushkin, Ilia, et al. (författare)
  • Application of double-focusing sector field ICP-MS for determination of ultratrace constituents in samples characterized by complex composition of the matrix
  • 2018
  • Ingår i: Science of the Total Environment. - : ELSEVIER SCIENCE BV. - 0048-9697 .- 1879-1026. ; 622-623, s. 203-213
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of double focusing, sector fieldmass spectrometry (ICP-SFMS) for determination of analytes, including technology critical elements (TCE), at ultra-trace levels in environmental and clinical matrices was critically evaluated. Different configurations of the ICP-SFMS introduction system as well as various sample preparations, pre-concentration andmatrix separation methods were employed and compared. Factors affecting detection capabilities and accuracy of data produced (instrumental sensitivity, contamination risks, purity of reagents, spectral interferences, matrix effects, analyte recovery and losses) were discussed. Optimized matrixspecific methods were applied to a range of reference and control materials (riverine, brackish and seawaters; whole blood, serumand urine) as well as tap water and snow samples collected in the area of Lulea city, northern Sweden; brackish and seawater from the Laptev Sea; venous blood samples with a special emphasis on determination of Au, Ag, Ir, Os, Pd, Pt, Re, Rh, Ru, Sb and Te. Even though these low abundant elements are relatively under-documented, the results produced were compared with published data, where available.
  •  
7.
  • Rodushkin, Ilia, et al. (författare)
  • Elemental stable isotope assessment of groundwater contamination: Recent developments
  • 2022
  • Ingår i: Current Opinion in Environmental Science & Health. - : Elsevier. - 2468-5844. ; 26
  • Forskningsöversikt (refereegranskat)abstract
    • Anthropogenic contamination of water resources remains a severe environmental concern on a global scale. Radiogenic and stable isotope measurements (especially for light elements) constitute well-known tools for the identification of pollution sources and thus have considerable potential in prevention and remediation efforts. Recent instrumental and methodological advances have extended the isotope ‘toolbox’ to include a significant number of new stable isotope systems, which in turn resulted in rapid growth of studies using these novel tracers in the field of environmental forensics. Isotopic fractionation, occurring during post-release transformation of contaminants, offers an additional benefit of possibility to study the fate of pollutants in aquatic systems. This review will focus on selected relevant studies in the field and present future trends and development.
  •  
8.
  • Sutliff-Johansson, Stacy, et al. (författare)
  • Environmental Monitoring of Technology Critical Elements in contaminated Sediments in the Bothnian Bay, Northern Sweden
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Emerging technologies often are based on a variety of elements, some of which are in high demand for their importance in technological applications but are in relatively short supply. These technology critical elements (TCE) are often insufficiently researched and their natural abundance and behavior in environmental systems can be poorly understood or not known. The increase in demand of TCEs promotes a growth in their dissemination into the environment through anthropogenic means, and a lack of information on their natural abundances and behavior could have adverse effects on communities and natural habitats. This study investigated sediments affected by industrial activity in the Kallholm Bay and the open Bothnian Bay in Northern Sweden. Activities in the area include sulphide ore processing at the Rönnskär smelter as well as secondary scrap metal and end of life electronic recycling. The vertical distribution of TCEs (Ge, Te, Tl, Re, Ta, W, Ga, Nb and REE) were investigated in sediment cores collected in Kallholm Bay and the open Bothnian Bay. Determination of concentrations was achieved through Inductively Coupled Plasma–Sector Field Mass Spectrometry (ICP-SFMS). Fractionation of TCEs and REEs in the sediments was also investigated using a 5-step sequential extraction procedure. Evaluation of anthropogenically impacted sediments showed enrichment of all elements excluding Ga, Nb and the REEs, which are suspected to be of natural origin. Enrichment of Ge, Te, Tl, and Re were assumed to be related to sulphide ore processing whereas Ta and W were related to scrap metal and electronic processing. Several elements (Ge, Tl and Te) showed a change in geochemical behavior related to anthropogenic activity. Only Te showed an increase in the Bothnian Bay sediments related to anthropogenic activity.
  •  
9.
  • Sutliff-Johansson, Stacy, et al. (författare)
  • Groundwater environmental forensic investigation combining multivariate statistical techniques and screening analyses
  • 2020
  • Ingår i: Environmental Forensics. - : Taylor & Francis. - 1527-5922 .- 1527-5930.
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy metal contamination was identified in groundwater monitoring wells surrounding a waste deposit facility at the Rönnskär Cu–Pb–Zn smelter in Skellefteå, northern Sweden. The main objective of this study is to identify the sources of contamination, utilizing element screening analyses and multivariate statistical techniques. A second objective is to determine the usefulness of these techniques in Environmental Forensics investigations of contaminated groundwater at a complex industrial site. Water samples were collected from four groundwater monitoring wells and six waste deposit cells surrounding the contaminated area. Seventy-two elements are statistically examined and the dataset is reduced to the variables representative of the contaminated source material from the smelting process. A three-component model is identified and explains 88% of the total variation in the dataset. Component 1 includes concentrations of Cd, Co, Ni, Rb, Re, and Zn. This component displays a high correlation with two of the deposit cells and their associated groundwater monitoring wells. Component 2 is comprised of Sb, Cu, and Mo. This component displays a correlation between all monitoring wells and deposits likely due to the high mobility of these elements as oxyanions. Component 3 is dominated by As and displays high correlation to three older deposit cells representing a completely different source than for Components 1 and 2. The application of screening analyses and multivariate statistics in this study has achieved a meaningful identification of sources of contamination in the investigated area. It was also shown to be useful as an initial survey aiming to optimize a full-scale monitoring program at the site.
  •  
10.
  • Sutliff-Johansson, Stacy, et al. (författare)
  • Tracing anthropogenic sources of Tantalum and Niobium in Bothnian Bay sediments, Sweden
  • 2021
  • Ingår i: Journal of Soils and Sediments. - : Springer. - 1439-0108 .- 1614-7480. ; 21:3, s. 1488-1503
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose This study aims to evaluate temporal trends of Tantalum (Ta) and Niobium (Nb) concentrations in northern Baltic Sea sediments with focus on the potential impact from the Ronnskar sulfide ore smelter, located 15 km east of Skelleftea in northern Sweden. The potential of Ta or Nb to serve as tracers for environmental pollution caused by the electronic waste is compared. Lastly, correlations between Ta and Nb concentrations and those of major redox elements are investigated. Methods A 35-cm-deep core was collected in the harbor bay (Kallholmsfjarden) outside of the smelter. A secondary 6-m-deep sediment core was collected in the deep Bothnian Bay for comparative purposes. Element screening analysis was conducted the using ICP-SFMS for the Kallhomsfjarden core and a combination of ICP-SFMS and ICP-OES for the Bothnian Bay core. In the final analysis, a 5-step sequential extraction technique was preformed to allow for better prediction of the fate and mobility of Ta and Nb. Results and discussion In the vicinity of the smelter, Ta concentration increases from 0.42 to 3.8 ppm from the time coinciding with the beginning of electronic waste processing. Conversely, Nb concentration remained stable at background levels throughout the core at 6.33 +/- 0.78 ppm. The Nb/Ta ratio thus changed from 14.5 to 1.7, reflecting an increase of anthropogenic input of Ta into the bay sediments. In the pre-industrial part of the sediment, concentrations of both elements follow concentration of aluminosilicates in the core. In recent sediments, however, the anthropogenic Ta exhibits an association with hydrous ferric oxides (HFOs) and organic matter. Conclusions Notable increases in Ta concentrations began following the beginning of scrap metal and electronic waste processing at the Ronnskar smelter. Anthropogenic Ta introduced in the upper portion of the sediment and are more associated with HFOs and organic material than natural Ta seen in the deeper parts of the core where detrital Ta is most common. Niobium was not affected by the Ronnskar smelter and displayed no notable change to the preindustrial background.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy