SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Privon G.) srt2:(2018)"

Sökning: WFRF:(Privon G.) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falstad, Niklas, 1987, et al. (författare)
  • Hidden molecular outflow in the LIRG Zw 049.057
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2-1 and J = 6-5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s -1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.
  •  
2.
  • Barcos-Munoz, Loreto, et al. (författare)
  • Fast, Collimated Outflow in the Western Nucleus of Arp 220
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 853:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first spatially and spectrally resolved image of the molecular outflow in the western nucleus of Arp 220. The outflow, seen in HCN (1-0) by the Atacama Large millimeter/sub-millimeter Array, is compact and collimated, with an extension ≲120 pc. Bipolar morphology emerges along the minor axis of the disk, with redshifted and blueshifted components reaching a maximum inclination-corrected velocity of km s -1 . The outflow is also seen in CO and continuum emission, the latter implying that it carries significant dust. We estimate a total mass in the outflow of , a dynamical time of ∼10 5 yr, and mass outflow rates of yr -1 and yr -1 for the northern and southern lobes, respectively. Possible driving mechanisms include supernovae energy and momentum transfer, radiation pressure feedback, and a central AGN. The latter could explain the collimated morphology of the HCN outflow; however, we need more complex theoretical models, including contributions from supernovae and AGN, to pinpoint the driving mechanism of this outflow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy