SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Qiu Youai) srt2:(2018)"

Search: WFRF:(Qiu Youai) > (2018)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Posevins, Daniels, et al. (author)
  • Highly Diastereoselective Palladium-Catalyzed Oxidative Carbocyclization of Enallenes Assisted by a Weakly Coordinating Hydroxyl Group
  • 2018
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:9, s. 3210-3214
  • Journal article (peer-reviewed)abstract
    • A highly diastereoselective palladium-catalyzed oxidative carbocyclization-borylation of enallenes assisted by a weakly coordinating hydroxyl group was developed. The reaction afforded functionalized cyclo-hexenol derivatives, in which the 1,3-relative stereo chemistry is controlled (d.r. > 50:1). Other weakly coordinating oxygen-containing groups (ketone, alkoxide, acetate) also assisted the carbocyclization toward cyclo-hexenes. The reaction proceeds via a ligand exchange on Pd of the weakly coordinating group with a distant olefin group. The high diastereoselectivity of the hydroxyl directed reaction could be rationalized by a face-selective coordination of the distant olefin. It was demonstrated that the primary coordination of the close-by oxygen containing functionality was necessary for the reaction to occur and removal of this functionality shut down the reaction.
  •  
3.
  • Qiu, Youai, et al. (author)
  • Mechanistic Insight into Enantioselective Palladium-Catalyzed Oxidative Carbocyclization-Borylation of Enallenes
  • 2018
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 24:10, s. 2433-2439
  • Journal article (peer-reviewed)abstract
    • The asymmetric palladium-catalyzed oxidative carbocyclization-borylation of enallenes, employing a chiral phosphoric acid as co-catalyst, constitutes an efficient and convenient entry into functionalized building blocks with cyclopentene scaffolds in high enantiopurity. Up till now there has been a lack of knowledge concerning the origin of enantioselectivity of this reaction as well as the absolute configuration of the product. Herein, we report the crystal structure of one of the compounds generated via this carbocyclization, providing the link between the configuration of the products and the configuration of the chiral phosphoric acid used in the reaction. Furthermore, the origin of the enantioselectivity is thoroughly investigated with density functional theory (DFT) calculations. By careful examination of different possible coordination modes, it is shown that the chiral phosphoric acid and the corresponding phosphate anion serve as ligands for palladium during the key stereoselectivity-determining cyclization step. In addition, we examine reactions wherein an extra chiral reagent, a p-benzoquinone containing a chiral sulfoxide, is used. The combined experimental and theoretical studies provide insight into the details of complexation of palladium with various species present in the reaction mixture, furnishing a general understanding of the factors governing the stereoselectivity of this and related catalytic reactions.
  •  
4.
  • Yang, Bin, et al. (author)
  • Control of Selectivity in Palladium(II)-Catalyzed Oxidative Transformations of Allenes
  • 2018
  • In: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 51:6, s. 1520-1531
  • Research review (peer-reviewed)abstract
    • Oxidation reactions play a central role in organic synthesis, and it is highly desirable that these reactions are mild and occur under catalytic conditions. In Nature, oxidation reactions occur under mild conditions via cascade processes, and furthermore, they often occur in an enantioselective manner with many of them involving molecular oxygen or hydrogen peroxide as the terminal oxidant. Inspired by the reactions in Nature, we have developed a number of Pd(II)-catalyzed cascade reactions under mild oxidative conditions. These reactions have an intrinsic advantage of step economy and rely on selectivity control in each step. In this Account, we will discuss the control of chemo-, regio-, and diastereoselectivity in Pd(II)-catalyzed dehydrogenative cascade coupling reactions. The enantioselective version of this methodology has also been addressed, and new chiral centers have been introduced using a catalytic amount of a chiral phosphoric acid (CPA). Research on this topic has provided access to important compounds attractive for synthetic and pharmaceutical chemists. These compounds include carbocyclic, heterocyclic, and polycyclic systems, as well as polyunsaturated open-chain structures. Reactions leading to these compounds are initiated by coordination of an allene and an unsaturated pi-bond moiety, such as olefin, alkyne, or another allene, to the Pd(II) center, followed by allene attack involving a C(sp(3))-H cleavage under mild reaction conditions. Recent progress within our research group has shown that weakly coordinating groups (e.g., hydroxyl, alkoxide, or ketone) could also initiate the allene attack on Pd(II), which is essential for the oxidative carbocyclization. Furthermore, a highly selective palladium-catalyzed allenic C(sp(3))-H bond oxidation of allenes in the absence of an assisting group was developed, which provides a novel and straightforward synthesis of [3]dendralene derivatives. For the oxidative systems, benzoquinone (BQ) and its derivatives are commonly used as oxidants or catalytic co-oxidants (electron transfer mediators, ETMs) together with molecular oxygen. A variety of transformations including carbocyclization, acetoxylation, arylation, carbonylation, borylation, beta-hydride elimination, alkynylation, alkoxylation, and olefination have been demonstrated to be compatible with this Pd(II)-based catalytic oxidative system. Recently, several challenging synthetic targets, such as cyclobutenes, seven-membered ring carbocycles, spirocyclic derivatives, functional cyclohexenes, and chiral cyclopentenone derivatives were obtained with high selectivity using these methods. The mechanisms of the reactions were mainly studied by kinetic isotope effects (KIEs) or DFT computations, which showed that in most cases the C(sp(3))-H cleavage is the rate-determining step (RDS) or partially RDS. This Account will describe our efforts toward the development of highly selective and atom-economic palladium(II)-catalyzed oxidative transformation of allenes (including enallenes, dienallenes, bisallenes, allenynes, simple allenes, and allenols) with a focus on overcoming the selectivity problem during the reactions.
  •  
5.
  • Zhu, Can, et al. (author)
  • Highly Selective Palladium-Catalyzed Hydroborylative Carbocyclization of Bisallenes to Seven-Membered Rings
  • 2018
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:43, s. 14324-14333
  • Journal article (peer-reviewed)abstract
    • A highly selective palladium-catalyzed hydroborylative carbocyclization of bisallenes to afford seven-membered rings has been established. This ring-closing coupling reaction showed good functional group compatibility with high chemo- and regioselectivity, as seven-membered ring 3 was the only product obtained. The extensive use of different linkers, including nitrogen, oxygen, malononitrile, and malonate, showed a broad substrate scope for this approach. A one-pot cascade reaction was realized by trapping the primary allylboron compound with an aldehyde, affording a diastereomerically pure alcohol and a quaternary carbon center by formation of a new C-C bond. A comprehensive mechanistic DFT investigation is also presented. The calculations suggest that the reaction proceeds via a concerted hydropalladation pathway from a Pd(0)-olefin complex rather than via a pathway involving a defined palladium hydride species. The reaction was significantly accelerated by the coordination of the pendant olefin, as well as the introduction of suitable substituents in the bridge, due to the Thorpe-Ingold effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view