SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Read John) srt2:(2020-2023)"

Sökning: WFRF:(Read John) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falster, Daniel, et al. (författare)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • Ingår i: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
2.
  • Kiefer, M., et al. (författare)
  • The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:19, s. 4589-4642
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10-30 hPa, 30-100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr-1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers.
  •  
3.
  • Read, William G., et al. (författare)
  • The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:11, s. 3377-3400
  • Tidskriftsartikel (refereegranskat)abstract
    • Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300-100 hPa. UTH is a challenging measurement, because concentrations vary between 2-1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180-250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average similar to 30 % agreement amongst themselves and frost-point data but with an additional similar to 30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa.
  •  
4.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  • 2021
  • swepub:Mat__t
  •  
6.
  • 2021
  • swepub:Mat__t
  •  
7.
  • Agirre, Jon, et al. (författare)
  • The CCP4 suite: integrative software for macromolecular crystallography
  • 2023
  • Ingår i: Acta Crystallographica Section D. - : INT UNION CRYSTALLOGRAPHY. - 2059-7983. ; 79, s. 449-461
  • Tidskriftsartikel (refereegranskat)abstract
    • The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
  •  
8.
  • Fisher, Gemma, et al. (författare)
  • Allosteric rescue of catalytically impaired ATP phosphoribosyltransferase variants links protein dynamics to active-site electrostatic preorganisation
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy