SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rheindt Frank E.) "

Sökning: WFRF:(Rheindt Frank E.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jarvis, Erich D., et al. (författare)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
3.
  • Chattopadhyay, Balaji, et al. (författare)
  • Novel genome reveals susceptibility of popular gamebird, the red-legged partridge (Alectoris rufa, Phasianidae), to climate change
  • 2021
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646.
  • Tidskriftsartikel (refereegranskat)abstract
    • We produced a high-quality de novo genome assembly of the red-legged partridge A. rufa, the first reference genome of its genus, by utilising novel 10× Chromium technology. The estimated genome size was 1.19 Gb with an overall genome heterozygosity of 0.0022; no runs of homozygosity were observed. In total, 21,589 protein coding genes were identified and assigned to 16,772 orthologs. Of these, 201 emerged as unique to Alectoris and were enriched for positive regulation of epithelial cell migration, viral genome integration and maturation. Using PSMC analysis, we inferred a major demographic decline commencing ~140,000 years ago, consistent with forest expansion and reduction of open habitats during the Eemian interglacial. Present-day populations exhibit the historically lowest genetic diversity. Besides implications for management and conservation, this genome also promises key insights into the physiology of these birds with a view to improving poultry husbandry practices.
  •  
4.
  • Cros, Emilie, et al. (författare)
  • Fine‐scale barriers to connectivity across a fragmented South‐East Asian landscape in six songbird species
  • 2020
  • Ingår i: Evolutionary Applications. - 1752-4571. ; 13:5, s. 1026-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • Habitat  fragmentation  is  a major  extinction  driver.  Despite  dramatically  increas-ing fragmentation across the globe, its specific impacts on population connectivityacross species with differing life histories remain difficult to characterize, let alonequantify. Here, we investigate patterns of population connectivity in six songbirdspecies from Singapore, a highly fragmented tropical rainforest island. Using massivepanels of genome-wide single nucleotide polymorphisms across dozens of samplesper species, we examined population genetic diversity, inbreeding, gene flow andconnectivity among species along a spectrum of ecological specificities. We found ahigher resilience to habitat fragmentation in edge-tolerant and forest-canopy speciesas compared to forest-dependent understorey insectivores. The latter exhibited lev-els of genetic diversity up to three times lower in Singapore than in populations fromcontiguous forest elsewhere. Using dense genomic and geographic sampling, weidentified individual barriers such as reservoirs that effectively minimize gene flowin sensitive understorey birds, revealing that terrestrial forest species may exhibitlevels of sensitivity to fragmentation far greater than previously expected. This studyprovides a blueprint for conservation genomics at small scales with a view to iden-tifying preferred locations for habitat corridors, flagging candidate populations forrestocking with translocated individuals and improving the design of future reserves.
  •  
5.
  •  
6.
  •  
7.
  • Garg, Kritika M., et al. (författare)
  • When colors mislead : Genomics and bioacoustics prompt re-classification of Asian flycatcher radiation (Aves: Niltavinae)
  • 2024
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier. - 1055-7903 .- 1095-9513. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditional classification of many animals, including birds, has been highly dependent on external morphological characters like plumage coloration. However, both bioacoustics and genetic or genomic data have revolutionized our understanding of the relationships of certain lineages and led to sweeping taxonomic re-organizations. In this study, we present a case of erroneous delimitation of genus boundaries in the species-rich flycatcher subfamily Niltavinae. Genera within this subfamily have historically been delineated based on blue versus brown male body plumage until recent studies based on a few mitochondrial and nuclear loci unearthed several cases of generic misclassification. Here we use extensive bioacoustic data from 43 species and genomic data from 28 species for a fundamental reclassification of species in the Niltavinae. Our study reveals that song is an important trait to classify these birds even at the genus level, whereas plumage traits exhibit ample convergence and have led to numerous historic misattributions. Our taxonomic re-organization leads to new biogeographic limits of major genera, such that the genus Cyornis now only extends as far east as the islands of Sulawesi, Sula, and Banggai, whereas Eumyias is redefined to extend far beyond Wallace's Line to the islands of Seram and Timor. Our conclusions advise against an over-reliance on morphological traits and underscore the importance of integrative datasets.
  •  
8.
  • Gwee, Chyi Yin, et al. (författare)
  • Cryptic diversity in Cyornis (Ayes : Muscicapidae) jungle-flycatchers flagged by simple bioacoustic approaches
  • 2019
  • Ingår i: Zoological Journal of the Linnean Society. - : OXFORD UNIV PRESS. - 0024-4082 .- 1096-3642. ; 186:3, s. 725-741
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the ongoing taxonomic revolution incorporating multiple species delimitation methods, knowledge gaps persist in the taxonomy of comparatively well-studied animal groups such as birds. Morphologically cryptic species risk slipping under the conservation radar, as they get mistakenly united with other species. Here, we employed six to 11 vocal parameters of each population to examine the species delimitation of nine Cyornis jungle-flycatcher species complexes distributed across Asia. We found moderate to strong vocal evidence for the taxonomic elevation of ten cryptic Cyornis species. Additionally, we conducted mitochondrial and genome-wide SNP analyses for two of the Cyornis complexes to examine the effectiveness of bioacoustics as a tool for avian species delineation and found congruent results between vocal and molecular data. Therefore, we propose a taxonomic reclassification of the complicated Cyornis species complexes and recommend routine application of bioacoustics in avian taxonomic classification.
  •  
9.
  •  
10.
  • Suh, Alexander, et al. (författare)
  • Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83-99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25-22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20-17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity.
  •  
11.
  • Tan, David J.X., et al. (författare)
  • Novel genome and genome-wide SNPs reveal early fragmentation effects in an edge-tolerant songbird population across an urbanized tropical metropolis
  • 2018
  • Ingår i: Scientific Reports. - 2045-2322.
  • Tidskriftsartikel (refereegranskat)abstract
    • Although edge-tolerant species are known to benefit from habitat fragmentation, less is known about the population genetic impacts fragmentation may exert on edge-tolerant species. We examined the landscape genomic structure of an edge-tolerant forest-dependent bird species, the Striped Tit-Babbler Mixornis gularis, in the heavily urbanized island of Singapore to determine if two centuries of fragmentation have led to signs of isolation and loss of population-genetic diversity in different parts of the island. We obtained a high-quality complete reference genome with 78x coverage. Using almost 4000 SNPs from double-digest RAD-Sequencing across 46 individuals, we found that the population has likely experienced a recent contraction in effective population size and presently exhibits low population genetic diversity. Using empirical and simulation-based landscape genomic analyses, we also found that the subtle population genetic structure observed in the Striped Tit-Babbler population in Singapore is likely driven by isolation by distance resulting from limited dispersal. Our results demonstrate that population genetic impoverishment and subdivision can accumulate at relatively rapid rates in edge-tolerant bird species such as the Striped Tit-Babbler as a result of fragmentation, and that subtle spatial genetic structure can be detected over fine spatial and temporal scales using relatively few multilocus genomic SNPs.
  •  
12.
  •  
13.
  • Zhang, Dezhi, et al. (författare)
  • "Ghost Introgression" As a Cause of Deep Mitochondrial Divergence in a Bird Species Complex
  • 2019
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 36:11, s. 2375-2386
  • Tidskriftsartikel (refereegranskat)abstract
    • In the absence of nuclear-genomic differentiation between two populations, deep mitochondrial divergence (DMD) is a form of mito-nuclear discordance. Such instances of DMD are rare and might variably be explained by unusual cases of female-linked selection, by male-biased dispersal, by "speciation reversal" or by mitochondrial capture through genetic introgression. Here, we analyze DMD in an Asian Phylloscopus leaf warbler (Aves: Phylloscopidae) complex. Bioacoustic, morphological, and genomic data demonstrate close similarity between the taxa affinis and occisinensis, even though DMD previously led to their classification as two distinct species. Using population genomic and comparative genomic methods on 45 whole genomes, including historical reconstructions of effective population size, genomic peaks of differentiation and genomic linkage, we infer that the form affinis is likely the product of a westward expansion in which it replaced a now-extinct congener that was the donor of its mtDNA and small portions of its nuclear genome. This study provides strong evidence of "ghost introgression" as the cause of DMD, and we suggest that "ghost introgression" may be a widely overlooked phenomenon in nature.
  •  
14.
  • Zhang, Dezhi, et al. (författare)
  • Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow
  • 2021
  • Ingår i: Systematic Biology. - : Oxford University Press. - 1063-5157 .- 1076-836X. ; 70:5, s. 961-975
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leafwarblers) using one de novo genome assembly and 78 resequenced genomes. Onthe basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the "winner-takes-all democratic majority tree" is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.
  •  
15.
  • Zhang, Dezhi, et al. (författare)
  • Phylogenetic Conflict Between Species Tree and Maternally Inherited Gene Trees in a Clade of Emberiza Buntings (Aves: Emberizidae)
  • 2023
  • Ingår i: SYSTEMATIC BIOLOGY. - 1063-5157 .- 1076-836X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Different genomic regions may reflect conflicting phylogenetic topologies primarily due to incomplete lineage sorting and/or gene flow. Genomic data are necessary to reconstruct the true species tree and explore potential causes of phylogenetic conflict. Here, we investigate the phylogenetic relationships of 4 Emberiza species (Aves: Emberizidae) and discuss the potential causes of the observed mitochondrial non-monophyly of Emberiza godlewskii (Godlewski's bunting) using phylogenomic analyses based on whole genome resequencing data from 41 birds. Analyses based on both the whole mitochondrial genome and similar to 39 kilobases from the non-recombining W chromosome reveal sister relationships between each the northern and southern populations of E. godlewskii with E. cioides and E. cia, respectively. In contrast, the monophyly of E. godlewskii is reflected by the phylogenetic signal of autosomal and Z chromosomal sequence data as well as demographic inference analyses, which-in combination-support the following tree topology: ([{E. godlewskii, E. cia}, E. cioides], E. jankowskii). Using D-statistics, we detected multiple gene flow events among different lineages, indicating pervasive introgressive hybridization within this clade. Introgression from an unsampled lineage that is sister to E. cioides or introgression from an unsampled mitochondrial + W chromosomal lineage of E. cioides into northern E. godlewskii may explain the phylogenetic conflict between the species tree estimated from genome-wide data versus mtDNA/W tree topologies. These results underscore the importance of using genomic data for phylogenetic reconstruction and species delimitation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy