SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rickman E.) srt2:(2010-2014)"

Sökning: WFRF:(Rickman E.) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keller, H. U., et al. (författare)
  • E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 327:5962, s. 190-193
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
  •  
2.
  •  
3.
  • Thomas, N., et al. (författare)
  • The geomorphology of (21) Lutetia : Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 66:1, s. 96-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
4.
  • Mottola, S., et al. (författare)
  • The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. L2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus. Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P-1 = 12.76129 +/- 0.00005 h and P2 = 12.4043 +/- 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates lambda = 65 degrees +/- 15 degrees, beta = + 59 degrees +/- 15 degrees, corresponding to equatorial coordinates RA = 22 degrees, Dec = +76 degrees. However, we find that the mirror solution, also prograde, at lambda = 275 degrees +/- 15 degrees, beta = + 50 degrees +/- 15 degrees (or RA = 274 degrees, Dec = +27 degrees), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.
  •  
5.
  • Rickman, Hans, et al. (författare)
  • CHOMIK : a multi-method approach for studying Phobos
  • 2014
  • Ingår i: Solar system research. - 0038-0946 .- 1608-3423. ; 48:4, s. 279-286
  • Tidskriftsartikel (refereegranskat)abstract
    • CHOMIK is the name of a penetrator constructed for sampling and retrieval of Phobos surface material. It formed an integral part of the Phobos Sample Return Mission. In this paper we present its construction and intended mode of operation, since the concept is still viable for future missions either to Phobos or to other small bodies of similar dimensions. We take Phobos as an example to describe the science case for such an instrument and how it might be utilized to resolve important open issues regarding the origin of the Martian moons. Concerning the latter, we place emphasis on measurement techniques and analysis tools for mapping trace element concentrations in returned sample.
  •  
6.
  • Sierks, H., et al. (författare)
  • Images of Asteroid 21 Lutetia : A Remnant Planetesimal from the Early Solar System
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6055, s. 487-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 +/- 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
  •  
7.
  • Vincent, J. -B, et al. (författare)
  • Physical Properties of Craters on Asteroid (21) Lutetia
  • 2011
  • Ingår i: Lunar and Planetary Institute Science Conference Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • This abstract presents the physical properties of craters derived from the measurement of depth/diameter ratios on asteroid (21) Lutetia. We show how the d/D ratio varies in different regions and how it can be used to better understand the processes that affected the surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy