SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rocha Flavia) "

Search: WFRF:(Rocha Flavia)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Luize, Bruno Garcia, et al. (author)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • In: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Journal article (peer-reviewed)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
2.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
3.
  • Covey, Kristofer, et al. (author)
  • Carbon and Beyond : The Biogeochemistry of Climate in a Rapidly Changing Amazon
  • 2021
  • In: Frontiers in Forests and Gobal Change. - : Frontiers Media S.A.. - 2624-893X. ; 4
  • Research review (peer-reviewed)abstract
    • The Amazon Basin is at the center of an intensifying discourse about deforestation, land-use, and global change. To date, climate research in the Basin has overwhelmingly focused on the cycling and storage of carbon (C) and its implications for global climate. Missing, however, is a more comprehensive consideration of other significant biophysical climate feedbacks [i.e., CH4, N2O, black carbon, biogenic volatile organic compounds (BV0Cs), aerosols, evapotranspiration, and albedo] and their dynamic responses to both localized (fire, land-use change, infrastructure development, and storms) and global (warming, drying, and some related to El Nino or to warming in the tropical Atlantic) changes. Here, we synthesize the current understanding of (1) sources and fluxes of all major forcing agents, (2) the demonstrated or expected impact of global and local changes on each agent, and (3) the nature, extent, and drivers of anthropogenic change in the Basin. We highlight the large uncertainty in flux magnitude and responses, and their corresponding direct and indirect effects on the regional and global climate system. Despite uncertainty in their responses to change, we conclude that current warming from non-CO2 agents (especially CH4 and N2O) in the Amazon Basin largely offsets- and most likely exceeds-the climate service provided by atmospheric CO2 uptake. We also find that the majority of anthropogenic impacts act to increase the radiative forcing potential of the Basin. Given the large contribution of less-recognized agents (e.g., Amazonian trees alone emit similar to 3.5% of all global CH4), a continuing focus on a single metric (i.e., C uptake and storage) is incompatible with genuine efforts to understand and manage the biogeochemistry of climate in a rapidly changing Amazon Basin.
  •  
4.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
5.
  • Bernal, Ximena E., et al. (author)
  • Empowering Latina scientists
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Journal article (other academic/artistic)
  •  
6.
  • de Oliveira, Andressa Souza, et al. (author)
  • Antifungal activity of sustainable histone deacetylase inhibitors against planktonic cells and biofilms of Candida spp. and Cryptococcusneoformans
  • 2023
  • In: Medical Mycology. - : Oxford University Press (OUP). - 1369-3786 .- 1460-2709. ; 61:8
  • Journal article (peer-reviewed)abstract
    • The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.
  •  
7.
  •  
8.
  • Oliveira, Helena Rodrigues, et al. (author)
  • Biogas potential of biowaste: A case study in the state of Rio de Janeiro, Brazil
  • 2024
  • In: Renewable energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0960-1481 .- 1879-0682. ; 221
  • Journal article (peer-reviewed)abstract
    • Anaerobic digestion has been widely applied for waste treatment, renewable energy generation , biofertilizer production. The biogas potential in Brazil is sizable, but the state of Rio de Janeiro is largely dependent on fossil fuels , there is a lack of biogas potential assessments in the state. Thus, this study evaluated biomethane, electricity and biofertilizer potentials in the region. Three different scenarios of biomass supply were considered for four major biowaste streams: sewage sludge; cattle manure; sugarcane processing waste; and food waste. Biomethane generation from the assessed sources could reach 0.6-1.3 billion Nm(3) year(-1), corresponding to 1,768-3,961 GWh year(-1) of electricity , 1.6-3.3 million Mg year- 1 of biofertilizer. Cattle manure was responsible for 73-84% of the projected biomethane production, presenting an opportunity to reduce the sig-nificant emissions from livestock farming. The estimated biofertilizer production could meet the demands of the state , the produced electricity could offset up to 10% of the demand. The gas grid could facilitate the dis-tribution of upgraded biomethane, and 10-22% of the natural gas demand could be met. The findings of this work highlight the high potential for biogas generation in Rio de Janeiro, which is up to seven times larger than the current production.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (7)
research review (1)
Type of content
peer-reviewed (7)
other academic/artistic (1)
Author/Editor
Peres, Carlos A. (4)
Hoffman, Bruce (4)
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Carvalho, Fernanda A ... (3)
ter Steege, Hans (3)
show more...
Barlow, Jos (3)
Berenguer, Erika (3)
Damasco, Gabriel, 19 ... (3)
Balslev, Henrik (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
Andrade, Ana (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Arroyo, Luzmila (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
Brienen, Roel (3)
Camargo, José Luís (3)
Campelo, Wegliane (3)
Cano, Angela (3)
Cárdenas, Sasha (3)
Carrero Márquez, Yrm ... (3)
Castellanos, Hernán (3)
Castilho, Carolina V ... (3)
Cerón, Carlos (3)
Chave, Jerome (3)
Comiskey, James A. (3)
Correa, Diego F. (3)
Costa, Flávia R.C. (3)
Dallmeier, Francisco (3)
Dávila Doza, Hilda P ... (3)
Demarchi, Layon O. (3)
Dexter, Kyle G. (3)
Di Fiore, Anthony (3)
Galbraith, David (3)
show less...
University
University of Gothenburg (3)
Linköping University (3)
Umeå University (1)
Royal Institute of Technology (1)
Stockholm University (1)
Lund University (1)
show more...
Chalmers University of Technology (1)
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (8)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (3)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view