SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rogachevskii Igor) srt2:(2010-2014)"

Search: WFRF:(Rogachevskii Igor) > (2010-2014)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brandenburg, Axel, et al. (author)
  • Detection of Negative Effective Magnetic Pressure Instability in Turbulence Simulations
  • 2011
  • In: Astrophysical Journal, ISSN 0004-637X, EISSN 1538-4357. ; 740:2, s. L50-
  • Journal article (peer-reviewed)abstract
    • We present the first numerical demonstration of the negative effective magnetic pressure instability in direct numerical simulations of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma beta. By the action of this instability, initially uniform horizontal magnetic field forms flux concentrations whose scale is large compared to the turbulent scale. We further show that the magnetic energy of these large-scale structures is only weakly dependent on the magnetic Reynolds number. Our results support earlier mean-field calculations and analytic work that identified this instability. Applications to the formation of active regions in the Sun are discussed.
  •  
2.
  • Brandenburg, Axel, et al. (author)
  • Mean-field and direct numerical simulations of magnetic flux concentrations from vertical field
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562
  • Journal article (peer-reviewed)abstract
    • Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots. Aims. We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. Methods. We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. Results. Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough. Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being <= 1% equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of the instability. Conclusions. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.
  •  
3.
  • Brandenburg, Axel, et al. (author)
  • NEGATIVE EFFECTIVE MAGNETIC PRESSURE IN STRATIFIED FORCED TURBULENCE
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 749:2
  • Journal article (peer-reviewed)abstract
    • To understand the basic mechanism of the formation of magnetic flux concentrations, we determine by direct numerical simulations the turbulence contributions to the mean magnetic pressure in a strongly stratified isothermal layer with large plasma beta, where a weak uniform horizontal mean magnetic field is applied. The negative contribution of turbulence to the effective mean magnetic pressure is determined for strongly stratified forced turbulence over a range of values of magnetic Reynolds and Prandtl numbers. Small-scale dynamo action is shown to reduce the negative effect of turbulence on the effective mean magnetic pressure. However, the turbulence coefficients describing the negative effective magnetic pressure phenomenon are found to converge for magnetic Reynolds numbers between 60 and 600, which is the largest value considered here. In all these models, the turbulent intensity is arranged to be nearly independent of height, so the kinetic energy density decreases with height due to the decrease in density. In a second series of numerical experiments, the turbulent intensity increases with height such that the turbulent kinetic energy density is nearly independent of height. Turbulent magnetic diffusivity and turbulent pumping velocity are determined with the test-field method for both cases. The vertical profile of the turbulent magnetic diffusivity is found to agree with what is expected based on simple mixing length expressions. Turbulent pumping is shown to be down the gradient of turbulent magnetic diffusivity, but it is twice as large as expected. Corresponding numerical mean-field models are used to show that a large-scale instability can occur in both cases, provided the degree of scale separation is large enough and hence the turbulent magnetic diffusivity small enough.
  •  
4.
  • Brandenburg, Axel, et al. (author)
  • NEW SCALING FOR THE ALPHA EFFECT IN SLOWLY ROTATING TURBULENCE
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:2
  • Journal article (peer-reviewed)abstract
    • Using simulations of slowly rotating stratified turbulence, we show that the alpha effect responsible for the generation of astrophysical magnetic fields is proportional to the logarithmic gradient of kinetic energy density rather than that of momentum, as was previously thought. This result is in agreement with a new analytic theory developed in this paper for large Reynolds numbers and slow rotation. Thus, the contribution of density stratification is less important than that of turbulent velocity. The a effect and other turbulent transport coefficients are determined by means of the test-field method. In addition to forced turbulence, we also investigate supernova-driven turbulence and stellar convection. In some cases (intermediate rotation rate for forced turbulence, convection with intermediate temperature stratification, and supernova-driven turbulence), we find that the contribution of density stratification might be even less important than suggested by the analytic theory.
  •  
5.
  • Brandenburg, Axel, et al. (author)
  • SELF-ASSEMBLY OF SHALLOW MAGNETIC SPOTS THROUGH STRONGLY STRATIFIED TURBULENCE
  • 2013
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 776:2
  • Journal article (peer-reviewed)abstract
    • Recent studies have demonstrated that in fully developed turbulence, the effective magnetic pressure of a large-scale field (non-turbulent plus turbulent contributions) can become negative. In the presence of strongly stratified turbulence, this was shown to lead to a large-scale instability that produces spontaneous magnetic flux concentrations. Furthermore, using a horizontal magnetic field, elongated flux concentrations with a strength of a few percent of the equipartition value were found. Here we show that a uniform vertical magnetic field leads to circular magnetic spots of equipartition field strengths. This could represent a minimalistic model of sunspot formation and highlights the importance of two critical ingredients: turbulence and strong stratification. Radiation, ionization, and supergranulation may be important for realistic simulations, but are not critical at the level of a minimalistic model of magnetic spot formation.
  •  
6.
  •  
7.
  • Elperin, T., et al. (author)
  • Tangling clustering instability for small particles in temperature stratified turbulence
  • 2013
  • In: Physics of fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 25:8, s. 085104-
  • Journal article (peer-reviewed)abstract
    • We study tangling clustering instability of inertial particles in a temperature stratified turbulence with small finite correlation time. It is shown that the tangling mechanism in the temperature stratified turbulence strongly increases the degree of compressibility of particle velocity field. This results in the strong decrease of the threshold for the excitation of the tangling clustering instability even for small particles. The tangling clustering instability in the temperature stratified turbulence is essentially different from the inertial clustering instability that occurs in non-stratified isotropic and homogeneous turbulence. While the inertial clustering instability is caused by the centrifugal effect of the turbulent eddies, the mechanism of the tangling clustering instability is related to the temperature fluctuations generated by the tangling of the mean temperature gradient by the velocity fluctuations. Temperature fluctuations produce pressure fluctuations and cause particle accumulations in regions with increased instantaneous pressure. It is shown that the growth rate of the tangling clustering instability is root Re (l(0)/L-T)(2)/(3Ma)(4) times larger than that of the inertial clustering instability, where Re is the Reynolds number, Ma is the Mach number, l(0) is the integral turbulence scale, and L-T is the characteristic scale of the mean temperature variations. It is found that depending on the parameters of the turbulence and the mean temperature gradient there is a preferential particle size at which the particle clustering due to the tangling clustering instability is more effective. The particle number density inside the cluster after the saturation of this instability can be by several orders of magnitude larger than the mean particle number density. It is also demonstrated that the evaporation of droplets drastically changes the tangling clustering instability, e. g., it increases the instability threshold in the droplet radius. The tangling clustering instability is of a great importance, e. g., in atmospheric turbulence with temperature inversions.
  •  
8.
  • Haugen, Nils Erland L., et al. (author)
  • Detection of turbulent thermal diffusion of particles in numerical simulations
  • 2012
  • In: Physics of fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 24:7
  • Journal article (peer-reviewed)abstract
    • The phenomenon of turbulent thermal diffusion in temperature-stratified turbulence causing a non-diffusive turbulent flux (i.e., non-counter-gradient transport) of inertial and non-inertial particles in the direction of the turbulent heat flux is found using direct numerical simulations (DNS). In simulations with and without gravity, this phenomenon is found to cause a peak in the particle number density around the minimum of the mean fluid temperature for Stokes numbers less than 1, where the Stokes number is the ratio of particle Stokes time to turbulent Kolmogorov time at the viscous scale. Turbulent thermal diffusion causes the formation of inhomogeneities in the spatial distribution of inertial particles whose scale is large in comparison with the integral scale of the turbulence. The strength of this effect is maximum for Stokes numbers around unity, and decreases again for larger values. The dynamics of inertial particles is studied using Lagrangian modelling in forced temperature-stratified turbulence, whereas non-inertial particles and the fluid are described using DNS in an Eulerian framework.
  •  
9.
  • Jabbari, Sarah, et al. (author)
  • Magnetic flux concentrations from dynamo-generated fields
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568
  • Journal article (peer-reviewed)abstract
    • Context The mean field theory of magnetized stellar convection gives rise to two distinct instabilities; the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an alpha(2) mean field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods. We use both DNS and mean field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal held, We use the test-field method to compute relevant dynamo coefficients. Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MPS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
  •  
10.
  • Jabbari, Sarah, et al. (author)
  • Surface flux concentrations in a spherical alpha 2 dynamo
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556
  • Journal article (peer-reviewed)abstract
    • Context. In the presence of strong density stratification, turbulence can lead to the large-scale instability of a horizontal magnetic field if its strength is in a suitable range (around a few percent of the turbulent equipartition value). This instability is related to a suppression of the turbulent pressure so that the turbulent contribution to the mean magnetic pressure becomes negative. This results in the excitation of a negative effective magnetic pressure instability (NEMPI). This instability has so far only been studied for an imposed magnetic field. Aims. We want to know how NEMPI works when the mean magnetic field is generated self-consistently by an alpha(2) dynamo, whether it is affected by global spherical geometry, and whether it can influence the properties of the dynamo itself. Methods. We adopt the mean-field approach, which has previously been shown to provide a realistic description of NEMPI in direct numerical simulations. We assume axisymmetry and solve the mean-field equations with the Pencil Code for an adiabatic stratification at a total density contrast in the radial direction of approximate to 4 orders of magnitude. Results. NEMPI is found to work when the dynamo-generated field is about 4% of the equipartition value, which is achieved through strong alpha quenching. This instability is excited in the top 5% of the outer radius, provided the density contrast across this top layer is at least 10. NEMPI is found to occur at lower latitudes when the mean magnetic field is stronger. For weaker fields, NEMPI can make the dynamo oscillatory with poleward migration. Conclusions. NEMPI is a viable mechanism for producing magnetic flux concentrations in a strongly stratified spherical shell in which a magnetic field is generated by a strongly quenched alpha effect dynamo.
  •  
11.
  • Kemel, Koen, et al. (author)
  • Active Region Formation through the Negative Effective Magnetic Pressure Instability
  • 2013
  • In: Solar Physics. - : Springer Science and Business Media LLC. - 0038-0938 .- 1573-093X. ; 287:1-2, s. 293-313
  • Journal article (peer-reviewed)abstract
    • The negative effective magnetic-pressure instability operates on scales encompassing many turbulent eddies, which correspond to convection cells in the Sun. This instability is discussed here in connection with the formation of active regions near the surface layers of the Sun. This instability is related to the negative contribution of turbulence to the mean magnetic pressure that causes the formation of large-scale magnetic structures. For an isothermal layer, direct numerical simulations and mean-field simulations of this phenomenon are shown to agree in many details, for example the onset of the instability occurs at the same depth. This depth increases with increasing field strength, such that the growth rate of this instability is independent of the field strength, provided the magnetic structures are fully contained within the domain. A linear stability analysis is shown to support this finding. The instability also leads to a redistribution of turbulent intensity and gas pressure that could provide direct observational signatures.
  •  
12.
  • Kemel, Koen, et al. (author)
  • Non-uniformity effects in the negative effective magnetic pressure instability
  • 2013
  • In: Physica Scripta. - 0031-8949 .- 1402-4896. ; T155
  • Journal article (peer-reviewed)abstract
    • In direct numerical simulations of strongly stratified turbulence we have previously studied the development of large scale magnetic structures starting from a uniform background field. This is caused by an instability resulting from a negative contribution of small-scale turbulence to the effective (mean-field) magnetic pressure, and was qualitatively reproduced in mean-field simulations (MFS) where this pressure reduction was modeled as a function of the mean magnetic field normalized by the equipartition field. We now investigate the effect of mean current density on the turbulent pressure reduction. In our MFS, such currents are associated with sharp gradients of the growing structures. We find that an enhanced mean current density increases the suppression of the turbulent pressure.
  •  
13.
  • Kemel, Koen, et al. (author)
  • Properties of the negative effective magnetic pressure instability
  • 2012
  • In: Astronomical Notes - Astronomische Nachrichten. - : Wiley. - 0004-6337 .- 1521-3994. ; 333:2, s. 95-100
  • Journal article (peer-reviewed)abstract
    • As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic pressure, which, in turn, can cause a large-scale instability. In this study, hydromagnetic mean-field modelling is performed for an isothermally stratified layer in the presence of a horizontal magnetic field. The negative effective magnetic pressure instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean magnetic tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence, the fastest growing eigenmodes of NEMPI are two-dimensional. The growth rate is found to depend on a parameter beta(star) characterizing the turbulent contribution of the effective mean magnetic pressure for moderately strong mean magnetic fields. A fit formula is proposed that gives the growth rate as a function of turbulent kinematic viscosity, turbulent magnetic diffusivity, the density scale height, and the parameter beta(star). The strength of the imposed magnetic field does not explicitly enter provided the location of the vertical boundaries are chosen such that the maximum of the eigenmode of NEMPI fits into the domain. The formation of sunspots and solar active regions is discussed as possible applications of NEMPI.
  •  
14.
  • Kemel, Koen, et al. (author)
  • Spontaneous formation of magnetic flux concentrations in stratified turbulence
  • 2012
  • In: Solar Physics. - : Springer Science and Business Media LLC. - 0038-0938 .- 1573-093X. ; 280:2, s. 321-333
  • Journal article (peer-reviewed)abstract
    • The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNSs) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in the formation of large-scale inhomogeneous magnetic structures from an initially uniform magnetic field. Earlier investigations of this instability in DNSs of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma β are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L2/ηt, where ηt is the turbulent diffusivity and L is the scale of the domain. DNSs are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number
  •  
15.
  • Käpylä, Petri J., et al. (author)
  • Flux concentrations in turbulent convection
  • 2012
  • In: Proceedings of the International Astronomical Union. - : Cambridge University Press. - 9781107033832 ; , s. 283-288
  • Conference paper (peer-reviewed)abstract
    • We present preliminary results from high resolution magneto-convection simulations where we find the formation of flux concentrations from an initially uniform magnetic field. The structures appear in roughly ten convective turnover times and live close to a turbulent diffusion time. The time scales are compatible with the negative effective magnetic pressure instability (NEMPI), although structure formation is not restricted to regions where the effective magnetic pressure is negative.
  •  
16.
  • Mitra, Dhrubaditya, et al. (author)
  • Intense bipolar structures from stratified helical dynamos
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 445:1, s. 761-769
  • Journal article (peer-reviewed)abstract
    • We perform direct numerical simulations of the equations of magnetohydrodynamics with external random forcing and in the presence of gravity. The domain is divided into two parts: a lower layer where the forcing is helical and an upper layer where the helicity of the forcing is zero with a smooth transition in between. At early times, a large-scale helical dynamo develops in the bottom layer. At later times the dynamo saturates, but the vertical magnetic field continues to develop and rises to form dynamic bipolar structures at the top, which later disappear and reappear. Some of the structures look similar to delta spots observed in the Sun. This is the first example of magnetic flux concentrations, owing to strong density stratification, from self-consistent dynamo simulations that generate bipolar, super-equipartition strength, magnetic structures whose energy density can exceeds the turbulent kinetic energy by even a factor of 10.
  •  
17.
  • Rivero Losada, Illa, et al. (author)
  • Competition of rotation and stratification in flux concentrations
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556
  • Journal article (peer-reviewed)abstract
    • Context. In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable and spontaneously form local flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism, which is called negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios in which most of the magnetic field resides in the bulk of the convection zone and not at the bottom, as is often assumed. Recent work using mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers as low as 0.1. Aims. Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the effective magnetic pressure. We also quantify the kinetic helicity resulting from direct numerical simulations (DNS) with Coriolis numbers and strengths of stratification comparable to values near the solar surface and compare it with earlier work at smaller scale separation ratios. Further, we estimate the expected observable signals of magnetic helicity at the solar surface. Methods. To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using the tau approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the three-dimensional hydromagnetic equations in a Cartesian domain. Results. We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided the Coriolis number is below 0.06. In that case, kinetic and magnetic helicities are found to be weak and the rotational effect on the effective magnetic pressure is negligible as long as the production of flux concentrations is not inhibited by rotation. For faster rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own is not yet possible, but the rotational suppression of NEMPI is being alleviated. Conclusions. Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in the uppermost layers of the Sun, where the convective turnover time is less than two hours.
  •  
18.
  • Rivero Losada, Illa, et al. (author)
  • Magnetic flux concentrations in a polytropic atmosphere
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564
  • Journal article (peer-reviewed)abstract
    • Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers, in which the density scale height is constant throughout. Aims. We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface. Methods. To allow for a continuous transition from isothermal to poly tropic layers, we employ a generalization of the exponential function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such that the scale height is always the same at some reference height. We used both mean-field simulations (MPS) and direct numerical simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both horizontal and vertical applied magnetic fields were considered. Results. Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover, the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with horizontal magnetic fields to reach premature nonlinear saturation by what is called the potato-sack effect. The horizontal cross-section of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field. Conclusions. Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux concentrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.
  •  
19.
  • Rivero Losada, Illa, et al. (author)
  • Rotational effects on the negative magnetic pressure instability
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 548
  • Journal article (peer-reviewed)abstract
    • Context. The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-scale instability resulting in the formation of nonuniform magnetic structures, can be excited on the scale of many (more than ten) turbulent eddies (or convection cells). This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions. Aims. We want to understand the effects of rotation on this instability in both two and three dimensions. Methods. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to agree with properties of direct numerical simulations. Results. We find that the instability is already suppressed for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with propagation in the prograde direction at the equator with additional poleward migration away from the equator. Conclusions. We speculate that the prograde rotation of the magnetic pattern near the equator might be a possible explanation for the faster rotation speed of magnetic tracers relative to the plasma velocity on the Sun. In the bulk of the domain, kinetic and current helicities are negative in the northern hemisphere and positive in the southern.
  •  
20.
  • Rogachevskii, Igor, et al. (author)
  • COSMIC-RAY CURRENT-DRIVEN TURBULENCE AND MEAN-FIELD DYNAMO EFFECT
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 753:1
  • Journal article (peer-reviewed)abstract
    • We show that an a effect is driven by the cosmic-ray (CR) Bell instability exciting left-right asymmetric turbulence. Alfven waves of a preferred polarization have maximally helical motion, because the transverse motion of each mode is parallel to its curl. We show how large-scale Alfven modes, when rendered unstable by CR streaming, can create new net flux over any finite region, in the direction of the original large-scale field. We perform direct numerical simulations (DNSs) of a magnetohydrodynamic fluid with a forced CR current and use the test-field method to determine the alpha effect and the turbulent magnetic diffusivity. As follows from DNS, the dynamics of the instability has the following stages: (1) in the early stage, the small-scale Bell instability that results in the production of small-scale turbulence is excited; (2) in the intermediate stage, there is formation of larger-scale magnetic structures; (3) finally, quasi-stationary large-scale turbulence is formed at a growth rate that is comparable to that expected from the dynamo instability, but its amplitude over much longer timescales remains unclear. The results of DNS are in good agreement with the theoretical estimates. It is suggested that this dynamo is what gives weakly magnetized relativistic shocks such as those from gamma-ray bursts (GRBs) a macroscopic correlation length. It may also be important for large-scale magnetic field amplification associated with CR production and diffusive shock acceleration in supernova remnants (SNRs) and blast waves from GRBs. Magnetic field amplification by Bell turbulence in SNRs is found to be significant, but it is limited owing to the finite time available to the super-Alfvenicly expanding remnant. The effectiveness of the mechanisms is shown to be dependent on the shock velocity. Limits on magnetic field growth in longer-lived systems, such as the Galaxy and unconfined intergalactic CRs, are also discussed.
  •  
21.
  • Rogachevskii, Igor, et al. (author)
  • Pumping velocity in homogeneous helical turbulence with shear
  • 2011
  • In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 84
  • Journal article (peer-reviewed)abstract
    • Using different analytical methods (the quasilinear approach, the path-integral technique, and the tau-relaxation approximation) we develop a comprehensive mean-field theory for a pumping effect of the mean magnetic field in homogeneous nonrotating helical turbulence with imposed large-scale shear. The effective pumping velocity is proportional to the product of α effect and large-scale vorticity associated with the shear, and causes a separation of the toroidal and poloidal components of the mean magnetic field along the direction of the mean vorticity. We also perform direct numerical simulations of sheared turbulence in different ranges of hydrodynamic and magnetic Reynolds numbers and use a kinematic test-field method to determine the effective pumping velocity. The results of the numerical simulations are in agreement with the theoretical predictions.
  •  
22.
  • Warnecke, Jörn, et al. (author)
  • Bipolar Magnetic Structures Driven by Stratified Turbulence with a Coronal Envelope
  • 2013
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 777:2
  • Journal article (peer-reviewed)abstract
    • We report the spontaneous formation of bipolar magnetic structures in direct numerical simulations of stratified forced turbulence with an outer coronal envelope. The turbulence is forced with transverse random waves only in the lower (turbulent) part of the domain. Our initial magnetic field is either uniform in the entire domain or confined to the turbulent layer. After about 1-2 turbulent diffusion times, a bipolar magnetic region of vertical field develops with two coherent circular structures that live during one turbulent diffusion time, and then decay during 0.5 turbulent diffusion times. The resulting magnetic field strengths inside the bipolar region are comparable to the equipartition value with respect to the turbulent kinetic energy. The bipolar magnetic region forms a loop-like structure in the upper coronal layer. We associate the magnetic structure formation with the negative effective magnetic pressure instability in the two-layer model.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view