SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman N. J. G.) srt2:(2020-2021)"

Sökning: WFRF:(Rorsman N. J. G.) > (2020-2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kellard, J. A., et al. (författare)
  • Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 40
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we explored alpha-cell function in female mice fed a high-fat diet (HFD). Methods: Female mice expressing the Ca2+ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas. Results: In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2+ ([Ca2+](i)) oscillation frequency and amplitude. This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2+](i) oscillations were higher than those in CTL alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2+](i) activity from HFD alpha-cells, in contrast to observations in CTL mice. Conclusions: These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD. (C) 2020 The Author(s). Published by Elsevier GmbH.
  •  
2.
  •  
3.
  • Vergari, Elisa, et al. (författare)
  • Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:1, s. 32-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy