SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rosenbloom D) srt2:(2015-2019)"

Search: WFRF:(Rosenbloom D) > (2015-2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Albani, S, et al. (author)
  • Twelve thousand years of dust : the Holocene global dust cycle constrained by natural archives
  • 2015
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 11:6, s. 869-903
  • Journal article (peer-reviewed)abstract
    • Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP paleodust datasets in the last two decades provided a target for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust dataset that moves on from the positive experience of DIRTMAP and takes into account new scientific challenges, by providing a concise and accessible dataset of temporally resolved records of dust mass accumulation rates and particle grain-size distributions. We consider data from ice cores, marine sediments, loess/paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows investigation of the potential, uncertainties and confidence level of dust mass accumulation rates reconstructions, and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 43 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggest that minimum dust fluxes are likely observed during the Early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize datasets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance and variability of the global dust cycle during the Holocene, with dust load ranging from 17.1 to 20.5 Tg between 2000 and 10 000 years ago, and a minimum in the Early to Mid-Holocene (6000–8000 years ago).
  •  
3.
  • Nilsson, C. L., et al. (author)
  • Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome
  • 2015
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:2, s. 603-608
  • Journal article (peer-reviewed)abstract
    • We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques. The results from combining proteoENCODEdb searches with experimental mass spectral data indicate that some alternative splicing forms detected at the transcript level are in fact translated to proteins. Our results provide a step toward the directives of the C-HPP initiative and related biomedical research.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view