SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rubin Carl Johan) srt2:(2005-2009)"

Sökning: WFRF:(Rubin Carl Johan) > (2005-2009)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rubin, Carl-Johan, et al. (författare)
  • Differential gene expression in femoral bone from red junglefowl and domestic chicken, differing for bone phenotypic traits
  • 2007
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 8, s. 208-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Osteoporosis is frequently observed among aging hens from egg-producing strains (layers) of domestic chicken. White Leghorn (WL) has been intensively selected for egg production and it manifests striking phenotypic differences for a number of traits including several bone phenotypes in comparison with the wild ancestor of chicken, the red junglefowl (RJ). Previously, we have identified four Quantitative Trait Loci (QTL) affecting bone mineral density and bone strength in an intercross between RJ and WL. With the aim of further elucidating the genetic basis of bone traits in chicken, we have now utilized cDNA-microarray technology in order to compare global RNA-expression in femoral bone from adult RJ and WL (five of each sex and population). Results: When contrasting microarray data for all WL-individuals to that of all RJ-individuals we observed differential expression (False discovery rate adjusted p-values < 0.015) for 604 microarray probes. In corresponding male and female contrasts, differential expression was observed for 410 and 270 probes, respectively. Altogether, the three contrasts between WL and RJ revealed differential expression of 779 unique transcripts, 57 of which are located to previously identified QTL-regions for bone traits. Some differentially expressed genes have previously been attributed roles in bone metabolism and these were: WNT inhibitory factor I (WIFI), WD repeat-containing protein 5 (WDR5) and Syndecan 3 (SDC3). Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all 15 had lower expression in WL. Conclusion: We report the identification of 779 differentially expressed transcripts, several residing within QTL-regions for bone traits. Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all had lower expression levels in WL. In addition, transcripts encoding four translation initiation and translation elongation factor proteins also had lower expression levels in WL, possibly indicating perturbation of protein biosynthesis pathways between the two populations. Information derived from this study could be relevant to the bone research field and may also aid in further inference of genetic changes accompanying animal domestication.
  •  
2.
  • Innings, Åsa, et al. (författare)
  • Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood
  • 2007
  • Ingår i: Journal of Clinical Microbiology. - 0095-1137 .- 1098-660X. ; 45:3, s. 874-880
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a single-tube multiplex real-time PCR method for the detection of the eight most common Candida species causing septicemia: Candida albicans, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis, and C. tropicalis. The method developed targets the RNase P RNA gene RPR1. Sequences of this geiie were determined for seven of the Candida species and showed surprisiRgly large sequence variation. C. glabrata was found to have a gene that was five times longer gene than those of the other species, and the nucleotide sequence similarity between C. krusei and C. albicans was as low as 55%. The multiplex PCR contained three probes that enabled the specific detection of C. albicans, C. glabrata, and C. krusei and a fourth probe that allowed the general detection of the remaining species. The method was able to detect 1 to 10 genome copies when the detection limit was tested repeatedly for the four species C. albicans, C. glabrata, C. krusei, and C. guilliermondii. No significant difference in the detection limit was seen when the multiplex format was compared with single-species PCR, i.e., two primers and one probe. The method detected eight clinically relevant Candida species and did not react with other tested non-Candida species or human DNA. The assay was applied to 20 blood samples from nine patients and showed a sensitivity similar to that of culture.
  •  
3.
  • Lindahl, Katarina, et al. (författare)
  • Allele dependent silencing of COL1A2 using small interfering RNAs
  • 2008
  • Ingår i: International Journal of Medical Sciences. - 1449-1907. ; 5:6, s. 361-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) is generally caused by a dominant mutation in Collagen I, encoded by the genes COL1A1 and COL1A2. To date there is no satisfactory therapy for OI, but inactivation of the mutant allele through small interfering RNAs (siRNA) is a promising approach, as siRNAs targeting each allele of a polymorphism could be used for allele-specific silencing irrespective of the location of the actual mutations. In this study we examined the allele dependent effects of several tiled siRNAs targeting a region surrounding an exonic COL1A2 T/C polymorphism (rs1800222) in heterozygous primary human bone cells. Relative abundances of COL1A2 alleles were determined by cDNA sequencing and overall COL1A2 abundance was analyzed by quantitative PCR. One of the siRNAs decreased overall COL1A2 abundance by 71% of which 75% was due to silencing of the targeted T-allele. In conclusion, allele-preferential silencing of Collagen type I genes may be a future therapeutic approach for OI.
  •  
4.
  • Lindahl, Katarina, et al. (författare)
  • Heterozygosity for a coding SNP in COL1A2 confers a lower BMD and an increased stroke risk.
  • 2009
  • Ingår i: Biochemical and biophysical research communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 384:4, s. 501-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variation plays an important role in osteoporosis and a prime candidate gene is Collagen alpha2(I) (COL1A2). A coding polymorphism (rs42524) in COL1A2 has previously been associated with intracranial aneurysms. Here the effects of this polymorphism have been studied in relation to bone mineral density (BMD) and prevalences of stroke and myocardial infarction (MI). rs42524 was genotyped in elderly men (n = 2004) from the Swedish MrOS cohort. Genotypes were analysed for association to BMD and certain health parameters. Significant associations (overall P < 0.05), were observed between rs42524 genotype and BMD at several skeletal sites. Surprisingly, the heterozygote genotype class exhibited lower BMD than either homozygote group. When subjects were classified as heterozygotes or homozygotes, the heterozygous genotype was found to confer a lower BMD at total hip, femoral neck and trochanter Furthermore, the heterozygote genotype had an increased risk of stroke and MI, with population Attributable Risks being 0.12 and 0.08, respectively.
  •  
5.
  • Rubin, Carl-Johan, 1978- (författare)
  • Functional Genomics of Bone Metabolism : Novel Candidate Genes Identified by Studies in Chicken Models
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Osteoporosis is a disease that leads to decreased bone mineral density (BMD), an altered bone micro-architecture and fragile bones. The disease is highly heritable and numerous genes are thought to be involved, making it difficult to identify the causative genetic elements.Animal models, mainly intercrosses between laboratory strains of mice, have been succesfully used to map genes affecting these traits, but may not mirror the multifactorial genetic etiology of highly complex traits such as osteoporosis.Over the course of tens of thousand years humans have kept domestic animals whose phenotypic repertoires have been tailored to meet our needs. Wild-type red junglefowl (RJ) and domestic White Leghorn (WL) chicken differ for several bone traits. In this thesis Quantitative Trait Loci (QTL) mapping was used to trace the inheritance of bone traits in two separate intercrosses between RJ and WL. In these studies we identified several QTL that contributed to differences in BMD, bone size and biomechanical strength of bone. In a comparison of QTL identified in the two intercrosses it was observed that nine QTL had overlapping genomic positions, implicating these loci as important to bone phenotypic variation in chicken.In two separate studies, microarray technology was used to compare global gene expression in bone tissue from RJ and WL. In these studies, differential expression was observed for 779 and 560 genes, respectively. Many differentially expressed genes were co-localized with QTL, which implicates them as QTL-candidates. Results presented in this thesis link several genomic regions and genes to variation in bone traits. Increased knowledge about these identified genes and regions will contribute to a better understanding of the mechanisms underlying inter-individual differences in bone metabolism, both in chicken and man.
  •  
6.
  •  
7.
  • Rubin, Carl-Johan, et al. (författare)
  • Quantitative trait loci for BMD and bone strength in an intercross between domestic and wildtype chickens.
  • 2007
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 0884-0431. ; 22:3, s. 375-84
  • Tidskriftsartikel (refereegranskat)abstract
    • With chicken used as a model species, we used QTL analysis to examine the genetic contribution to bone traits. We report the identification of four QTLs for femoral traits: one for bone strength, one for endosteal circumference, and two affecting mineral density of noncortical bone. INTRODUCTION: BMD is a highly heritable phenotype, governed by elements at numerous loci. In studies examining the genetic contribution to bone traits, many loci have been identified in humans and in other species. The goal of this study was to identify quantitative trait loci (QTLs) controlling BMD and bone strength in an intercross between wildtype and domestic chickens. MATERIALS AND METHODS: A set of 164 markers, covering 30 chromosomes (chr.), were used to genotype 337 F2-individuals from an intercross of domesticated white Leghorn and wildtype red junglefowl chicken. DXA and pQCT were used to measure BMD and bone structure. Three-point bending tests and torsional strength tests were performed to determine the biomechanical strength of the bone. QTLs were mapped using forward selection for loci with significant marginal effects. RESULTS: Four QTLs for femoral bone traits were identified in QTL analysis with body weight included as a covariate. A QTL on chr. 1 affected female noncortical BMD (LOD 4.6) and is syntenic to human 12q21-12q23. Also located on chr. 1, a locus with synteny to human 12q13-14 affected endosteal circumference (LOD 4.6). On chr. 2, a QTL corresponding to human 5p13-p15, 7p12, 18q12, 18q21, and 9q22-9q31 affected BMD in females; noncortical (LOD 4.0) and metaphyseal (LOD 7.0) BMD by pQCT and BMD by DXA (LOD 5.9). A QTL located on chr. 20 (LOD 5.2) affected bone biomechanical strength and had sex-dependent effects. In addition to the significant QTLs, 10 further loci with suggestive linkage to bone traits were identified. CONCLUSIONS: Four QTLs were identified: two for noncortical BMD, one for endosteal circumference, and one affecting bone biomechanical strength. The future identification of genes responsible for these QTLs will increase the understanding of vertebrate skeletal biology.
  •  
8.
  • Rubin, Carl-Johan, et al. (författare)
  • Quantitative Trait Loci for BMD and Bone Strength in an Intercross Between Domestic and Wildtype Chickens
  • 2007
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 22:3, s. 375-384
  • Tidskriftsartikel (refereegranskat)abstract
    • With chicken used as a model species, we used QTL analysis to examine the genetic contribution to bone traits. We report the identification of four QTLs for femoral traits: one for bone strength, one for endosteal circumference, and two affecting mineral density of noncortical bone. Introduction: BMD is a highly heritable phenotype, governed by elements at numerous loci. In studies examining the genetic contribution to bone traits, many loci have been identified in humans and in other species. The goal of this study was to identify quantitative trait loci (QTLs) controlling BMD and bone strength in an intercross between wildtype and domestic chickens. Materials and Methods: A set of 164 markers, covering 30 chromosomes (chr.), were used to genotype 337 F 2-individuals from an intercross of domesticated white Leghorn and wildtype red junglefowl chicken. DXA and pQCT were used to measure BMD and bone structure. Three-point bending tests and torsional strength tests were performed to determine the biomechanical strength of the bone. QTLs were mapped using forward selection for loci with significant marginal effects. Results: Four QTLs for femoral bone traits were identified in QTL analysis with body weight included as a covariate. A QTL on chr. 1 affected female noncortical BMD (LOD 4.6) and is syntenic to human 12q21-12q23. Also located on chr. 1, a locus with synteny to human 12q 13-1.4 affected endosteal circumference (LOD 4.6). On chr. 2, a QTL corresponding to human 5p13-p15, 7p12, 18q12, 18q21, and 9q22-9q31 affected BMD in females; noncortical (LOD 4.0) and metaphyseal (LOD 7.0) BMD by pQCT and BMD by DXA (LOD 5.9). A QTL located on chr. 20 (LOD 5.2) affected bone biomechanical strength and had sex-dependent effects. In addition to the significant QTLs, 10 further loci with suggestive linkage to bone traits were identified. Conclusions: Four QTLs were identified: two for noncortical BMD, one for endosteal circumference, and one affecting bone biomechanical strength. The future identification of genes responsible for these QTLs will increase the understanding of vertebrate skeletal biology.
  •  
9.
  • Wright, Dominic, et al. (författare)
  • Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens
  • 2009
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 5:6, s. e1000512-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Rubin, Carl-Johan (8)
Kindmark, Andreas (6)
Andersson, Leif (5)
Mallmin, Hans (3)
Wright, Dominic (3)
Ljunggren, Östen (3)
visa fler...
Brändström, Helena (3)
Herrmann, Björn (2)
Larsson, Sune (2)
Ohlsson, Claes, 1965 (2)
Fredriksson, Robert (2)
Jensen, Per, 1956- (2)
Lindahl, Katarina (2)
Kerje, Susanne (2)
Gunnarsson, Ulrika (2)
Schütz, Karin (2)
Karlsson, Magnus (1)
Kirsebom, Leif A. (1)
Lundeberg, Joakim (1)
Jensen, Per (1)
Hallböök, Finn (1)
Bed'Hom, Bertrand (1)
Mellström, Dan, 1945 (1)
Isaksson, Magnus (1)
Lindberg, Johan (1)
Boije, Henrik (1)
Thollesson, Mikael (1)
Imsland, Freyja (1)
Savolainen, Peter (1)
Meadows, Jennifer (1)
Holmberg, Anna, 1974 (1)
Ohlsson, Claes (1)
Ullberg, Måns (1)
Orwoll, Eric (1)
Innings, Åsa (1)
Johansson, Anders, 1 ... (1)
Noreus, Niklas (1)
Fitzsimmons, Carolyn (1)
Rubin, Carl-Johan, 1 ... (1)
Burt, David, Profess ... (1)
Bed'Hom, B (1)
Gourichon, D. (1)
Vieaud, A. (1)
Tixier-Boichard, M. (1)
visa färre...
Lärosäte
Uppsala universitet (8)
Linköpings universitet (4)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
Karolinska Institutet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy