SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rukh Gull) srt2:(2015-2019)"

Sökning: WFRF:(Rukh Gull) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Shafqat, et al. (författare)
  • Gene Lifestyle Interactions With Relation to Obesity, Cardiometabolic, and Cardiovascular Traits Among South Asians
  • 2019
  • Ingår i: Frontiers in Endocrinology. - : FRONTIERS MEDIA SA. - 1664-2392. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • The rapid rise of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) during the last few decades among South Asians has been largely attributed to a major shift in lifestyles including physical inactivity, unhealthy dietary patterns, and an overall pattern of sedentary lifestyle. Genetic predisposition to these cardiometabolic risk factors may have interacted with these obesogenic environments in determining the higher cardiometabolic disease prevalence. Based on the premise that gene-environment interactions cause obesity and cardiometabolic diseases, we systematically searched the literature and considered the knowledge gaps that future studies might ful fill. We identified only seven published studies that focused specifically on gene-environment interactions for cardiometabolic traits in South Asians, most of which were limited by relatively small sample and lack of replication. Some studies reported that the differences in metabolic response to higher physical activity and low caloric diet might be modified by genetic risk related to these cardiometabolic traits. Although studies on gene lifestyle interactions in cardiometabolic traits report significant interactions, future studies must focus on more precise assessment of lifestyle factors, investigation of a larger set of genetic variants and the application of powerful statistical methods to facilitate translatable approaches. Future studies should also be integrated with findings both using mechanistic studies through laboratory settings and randomized clinical trials for clinical outcomes.
  •  
2.
  • Brunkwall, Louise, et al. (författare)
  • Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts
  • 2016
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 104:3, s. 809-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The consumption of sugar-sweetened beverages (SSBs), which has increased substantially during the last decades, has been associated with obesity and weight gain.Objective: Common genetic susceptibility to obesity has been shown to modify the association between SSB intake and obesity risk in 3 prospective cohorts from the United States. We aimed to replicate these findings in 2 large Swedish cohorts.Design: Data were available for 21,824 healthy participants from the Malmö Diet and Cancer study and 4902 healthy participants from the Gene-Lifestyle Interactions and Complex Traits Involved in Elevated Disease Risk Study. Self-reported SSB intake was categorized into 4 levels (seldom, low, medium, and high). Unweighted and weighted genetic risk scores (GRSs) were constructed based on 30 body mass index [(BMI) in kg/m2]-associated loci, and effect modification was assessed in linear regression equations by modeling the product and marginal effects of the GRS and SSB intake adjusted for age-, sex-, and cohort-specific covariates, with BMI as the outcome. In a secondary analysis, models were additionally adjusted for putative confounders (total energy intake, alcohol consumption, smoking status, and physical activity).Results: In an inverse variance-weighted fixed-effects meta-analysis, each SSB intake category increment was associated with a 0.18 higher BMI (SE = 0.02; P = 1.7 × 10−20; n = 26,726). In the fully adjusted model, a nominal significant interaction between SSB intake category and the unweighted GRS was observed (P-interaction = 0.03). Comparing the participants within the top and bottom quartiles of the GRS to each increment in SSB intake was associated with 0.24 (SE = 0.04; P = 2.9 × 10−8; n = 6766) and 0.15 (SE = 0.04; P = 1.3 × 10−4; n = 6835) higher BMIs, respectively.Conclusions: The interaction observed in the Swedish cohorts is similar in magnitude to the previous analysis in US cohorts and indicates that the relation of SSB intake and BMI is stronger in people genetically predisposed to obesity.
  •  
3.
  • Hindy, George, et al. (författare)
  • Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes
  • 2016
  • Ingår i: Genes & Nutrition. - : Springer Science and Business Media LLC. - 1555-8932 .- 1865-3499. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: TCF7L2 is a central transcription factor in the canonical wingless-type MMTV integration site (WNT) signaling pathway, and genetic variants in TCF7L2 have been found to interact with dietary fiber intake on type 2 diabetes risk. Here, we investigate whether other type 2 diabetes genes could be involved in the WNT signaling pathway and whether variants in such genes might interact with dietary fiber on type 2 diabetes incidence. Results: We included 26,905 individuals without diabetes from the Malmö Diet and Cancer Study cohort. Diet data was collected at baseline using a food frequency questionnaire, a 7-day food record, and an interview. Altogether, 51 gene loci were analyzed for putative links to WNT signaling. Over a mean follow-up period of 14.7 years, 3132 incident cases of type 2 diabetes were recorded. Seven genes (nine single nucleotide polymorphisms (SNPs)) were annotated as involved in WNT signaling including TCF7L2 (rs7903146 and rs12255372), HHEX (rs1111875), HNF1A (rs7957197), NOTCH2 (rs10923931), TLE4 (rs13292136), ZBED3 (rs4457053), and PPARG (rs1801282 and rs13081389). SNPs in TCF7L2, NOTCH2, and ZBED3 showed significant interactions with fiber intake on type 2 diabetes incidence (Pinteraction = 0.034, 0.005, 0.017, and 0.002, respectively). The magnitude of the association between the TCF7L2 risk allele and incident type 2 diabetes increased from the lowest to the highest quintiles of fiber intake. Higher fiber associated with lower type 2 diabetes risk only among risk allele carriers of the NOTCH2 variant and homozygotes of the risk allele of the ZBED3 variant. Conclusions: Our results suggest that several type 2 diabetes susceptibility SNPs in genes involved in WNT signaling may interact with dietary fiber intake on type 2 diabetes incidence.
  •  
4.
  • Nettleton, Jennifer A, et al. (författare)
  • Gene x dietary pattern interactions in obesity : analysis of up to 68 317 adults of European ancestry
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:16, s. 4728-4738
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphismswere genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjustedWHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjustedWHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.
  •  
5.
  • Norby, Faye L, et al. (författare)
  • Association of Lipid-Related Genetic Variants with the Incidence of Atrial Fibrillation : The AFGen Consortium
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Several studies have shown associations between blood lipid levels and the risk of atrial fibrillation (AF). To test the potential effect of blood lipids with AF risk, we assessed whether previously developed lipid gene scores, used as instrumental variables, are associated with the incidence of AF in 7 large cohorts.METHODS: We analyzed 64,901 individuals of European ancestry without previous AF at baseline and with lipid gene scores. Lipid-specific gene scores, based on loci significantly associated with lipid levels, were calculated. Additionally, non-pleiotropic gene scores for high-density lipoprotein cholesterol (HDLc) and low-density lipoprotein cholesterol (LDLc) were calculated using SNPs that were only associated with the specific lipid fraction. Cox models were used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) of AF per 1-standard deviation (SD) increase of each lipid gene score.RESULTS: During a mean follow-up of 12.0 years, 5434 (8.4%) incident AF cases were identified. After meta-analysis, the HDLc, LDLc, total cholesterol, and triglyceride gene scores were not associated with incidence of AF. Multivariable-adjusted HR (95% CI) were 1.01 (0.98-1.03); 0.98 (0.96-1.01); 0.98 (0.95-1.02); 0.99 (0.97-1.02), respectively. Similarly, non-pleiotropic HDLc and LDLc gene scores showed no association with incident AF: HR (95% CI) = 1.00 (0.97-1.03); 1.01 (0.99-1.04).CONCLUSIONS: In this large cohort study of individuals of European ancestry, gene scores for lipid fractions were not associated with incident AF.
  •  
6.
  • Rukh, Gull, et al. (författare)
  • Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165. ; 106:1, s. 256-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies have shown conflicting associations between the salivary amylase gene (AMY1) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet. Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits. Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmo "Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energyadjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage. Results: AMY1 copy number was not associated with BMI (P = 0.80) or body fat percentage (P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI (P-interaction = 0.007) and body fat percentage (P-interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group (P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group (P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch. Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch.
  •  
7.
  • Rukh, Gull (författare)
  • Genetic Determinants of Obesity in Relation to Diet, Weight Gain and Mortality
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Obesity is one of the major health concerns that has reached epidemic proportions globally. It is generally believed to be a result of interactions between genetic and environmental factors. In this thesis we investigated the role of dietary factors in modifying the genetic susceptibility to obesity (papers I to III), studied the association between genetic susceptibility to obesity and weight gain at different time-points in life (paper IV) and tried to dissect the causality between cardiometabolic traits and mortality (paper V). The work in this thesis was conducted using data from the population based prospective Malmö Diet and Cancer Study (MDCS; N= ~30,000) and the Gene-Lifestyle interactions And Complex traits Involved in Elevated disease Risk (GLACIER; N= ~5000) cohorts. In paper I, we did not observe any evidence for macronutrient, fiber or total energy intake in modifying the genetic susceptibility to obesity when genetic susceptibility was represented as a Genetic Risk Score (GRS) based upon 13 BMI associated genetic variants. In individual SNP analyses, after correcting for multiple comparisons, some of the individual obesity loci such as NEGR1 rs2815752 associated with fat, carbohydrate and fiber intakes (P≤1x10-4 for all) and BDNF rs4923461 interacted with protein intake on BMI (Pinteraction=0.001). In paper II, pooled analyses of MDCS and GLACIER suggested 0.16 (SE=0.04) kg/m2 increase in BMI (P=8x10-5) in the lowest quartile of GRS (comprised of 30 BMI-associated genetic variants) for each increment in category of sugar-sweetened beverages (SSB) intake vs. 0.24 (SE=0.04) kg/m2 higher BMI in the highest GRS quartile (P=1x10-7). We also observed evidence for the role of SSB intake in modifying the genetic susceptibility to obesity (Pinteraction=0.049). In paper III, a copy number variant (CNV) in the salivary amylase gene (AMY1) did not associate with obesity traits neither in men nor in women (P>0.05 for all). However, upon stratification by dietary starch intake, BMI decreased with increasing AMY1 CNV in low starch intake group (P=0.035) and increased with increasing AMY1 CNV in the high starch intake group (P=0.04) among females. These results suggest a putative role of starch intake in modifying the association between AMY1 CNV and obesity in women (Pinteraction=0.041). In paper IV, a GRS based on 31 BMI-associated genetic variants was associated with increased annual weight change (β=0.003 kg; SE=0.01; P=7x10-8) and increased odds for substantial weight gain (OR=1.01; 95% CI= 1.00-1.02; P=0.013) per risk allele from young to middle age in MDCS. However, the GRS was associated with decreased annual weight change (β=-0.005 kg; SE=0.002; P=0.002) and decreased risk for substantial weight gain (OR=0.97; 95% CI= 0.96-0.99; P=0.001) per risk allele during and after middle-age in the pooled analyses of MDCS and GLACIER. These results suggest a paradoxical inversed relationship between genetic susceptibility to obesity and weight gain during and after middle age compared to increased weight gain in younger age. In paper V, observations from multivariable Mendelian randomization analyses suggest a direct causal association of TG (P=0.017 and P=0.028) and an inverse association of HDLC (P=0.049 and P=0.005) with total- and cardiovascular mortality, respectively. In conclusion, the results from this thesis suggest a role of specific dietary factors in modifying the genetic susceptibility to obesity and that genetic variation affect weight gain differently at different time-points in life but the underlying mechanisms need to be further understood. Additionally,our findings points towards causal associations between TG and HDLC and mortality which can help to devise better treatment strategies in clinical practice.
  •  
8.
  • Rukh, Gull, et al. (författare)
  • Inverse relationship between a genetic risk score of 31 BMI loci and weight change before and after reaching middle age
  • 2016
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 40:2, s. 252-259
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/OBJECTIVE: Genome-wide-association studies have identified numerous body mass index (BMI)-associated variants, but it is unclear how these relate to weight gain in adults at different ages.METHODS: We examined the association of a genetic risk score (GRS), consisting of 31 BMI-associated variants, with an annual weight change (AWC) and a substantial weight gain (SWG) of 10% by comparing self-reported weight at 20 years (y) with baseline weight (mean: 58 y; s.d.: 8 y) in 21407 participants from the Malmö Diet and Cancer Study (MDCS), and comparing baseline weight to weight at follow-up (mean: 73 y; s.d.: 6 y) among 2673 participants. Association between GRS and AWG and SWG was replicated in 4327 GLACIER (Gene x Lifestyle interactions And Complex traits Involved in Elevated disease Risk) participants (mean: 45 y; s.d.: 7 y) with 10 y follow-up. Cohort-specific results were pooled by fixed-effect meta-analyses.RESULTS: In MDCS, the GRS was associated with increased AWC (β: 0.003; s.e: 0.01; P: 7 × 10(-8)) and increased odds for SWG (odds ratio (OR) 1.01 (95% confidence interval (CI): 1.00, 1.02); P: 0.013) per risk-allele from age 20y, but unexpectedly with decreased AWC (β: -0.006; s.e: 0.002; P: 0.009) and decreased odds for SWG OR 0.96 (95% CI: 0.93, 0.98); P: 0.001) between baseline and follow-up. Effect estimates from age 20 y to baseline differed significantly from those from baseline to follow-up (P: 0.0002 for AWC and P: 0.0001 for SWG). Similar to MDCS, the GRS was associated with decreased odds for SWG OR 0.98 (95% CI: 0.96, 1.00); P: 0.029) from baseline to follow-up in GLACIER. In meta-analyses (n=7000), the GRS was associated with decreased AWC (β: -0.005; s.e.m. 0.002; P: 0.002) and decreased odds for SWG OR 0.97 (95% CI: 0.96, 0.99); P: 0.001) per risk-allele.CONCLUSIONS: Our results provide convincing evidence for a paradoxical inversed relationship between a high number of BMI-associated risk-alleles and less weight gain during and after middle-age, in contrast to the expected increased weight gain seen in younger age.
  •  
9.
  • Shungin, Dmitry, et al. (författare)
  • Using genetics to test the causal relationship of total adiposity and periodontitis : Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 638-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis. Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI: 1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy