SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sögaard Christian 1990) srt2:(2018)"

Sökning: WFRF:(Sögaard Christian 1990) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Simonsson, Isabelle, 1990, et al. (författare)
  • The specific co-ion effect on gelling and surface charging of silica nanoparticles: Speculation or reality?
  • 2018
  • Ingår i: Colloids and Surfaces A: Physicochemical and Engineering Aspects. - : Elsevier BV. - 0927-7757 .- 1873-4359. ; 559, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Elsevier B.V. Based on extensive experimental investigations on many different oxide nanoparticles, it is now a well-established view that the counter-ions exhibit ion specific effects due to their high charge density and strong interaction with oppositively charged surfaces. On the other hand, studies regarding co-ion effects are scarcely reported in the literature. In this study we have measured the surface charge densities and gel-times of silica nanoparticles in a number of salts which have the same counter-ions but different co-ions, i.e. anions in this case. Gel-times were measured in LiCl, NaCl, NaNO3, NaClO4, NaClO3and Na2SO4as well as in KCl, KNO3, and K2SO4. We have seen clear correlations between the gel-times and the extent of ion pairing in the solutions; salts that have strong ion pairing exhibit longer gel-times than salts having highly dissociated ions. To better understand the mechanisms at work we have determined the surface charging of silica nanoparticles in these salt solutions and we have observed that the surface charging behavior of silica nanoparticles follows the trends seen in the gel-time studies. From our gel-time determinations and potentiometric measurements we can claim that there is a clear co-ion effect on the gelling and surface charging of silica nanoparticles.
  •  
2.
  • Sögaard, Christian, 1990, et al. (författare)
  • Silica sol as grouting material: a physio-chemical analysis
  • 2018
  • Ingår i: Nano Convergence. - : Springer Science and Business Media LLC. - 2196-5404. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.
  •  
3.
  • Sögaard, Christian, 1990, et al. (författare)
  • The long term stability of silica nanoparticle gels in waters of different ionic compositions and pH values
  • 2018
  • Ingår i: Colloids and Surfaces A: Physicochemical and Engineering Aspects. - : Elsevier BV. - 1873-4359 .- 0927-7757. ; 544, s. 127-136
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of silica nanoparticles for grouting underground tunnels offers an environmentally friendly option compared to organic grouting materials. Silica sols are commercially available and when mixed with an accelerator (salt) they form gels in a predetermined time. While much research has been focused on the practical implementation of silica sols in grouting as well as on the development of physical parameters such as viscosity and strength development, little is known about the long term stability of the resultant silica gels. When placed in rock fractures, parameters such as pH and ionic composition of groundwater may affect the long term stability and functionality of the gels. In this article we use a newly designed test equipment to simulate the behaviour of silica gels when water passes through the gel structure for up to 488 days. The pH and ionic composition of the water is varied to simulate environments that can be experienced by gels used for grouting applications. Results in the form of ionic composition, volume, and pH of leached water were used to evaluate and predict the lifetime of silica gels. The overall results show that several factors such as water flow and the nature of salt, so called accelerator used for gelling have significant effect on the gel life time. Furthermore, it is shown that the accelerator ions leach from the gels; however, the extent to which they are released from the gel depends upon the salt type. From these results we have predicted the lifetime of the 100 mL gels used in our experiments by using a simple numerical model. The predictions show that the total dissolution time for 100 mL gels are up to hundreds of years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy