SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salminen A) srt2:(2000-2004)"

Sökning: WFRF:(Salminen A) > (2000-2004)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zyryanov, AB, et al. (författare)
  • Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii
  • 2004
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 43:4, s. 1065-1074
  • Tidskriftsartikel (refereegranskat)abstract
    • Soluble inorganic pyrophosphatases (PPases) form two nonhomologous families, denoted I and II, that have similar active-site structures but different catalytic activities and metal cofactor specificities. Family II PPases, which are often found in pathogenic bacteria, are more active than family I PPases, and their best cofactor is Mn2+ rather than Mg2+, the preferred cofactor of family I PPases. Here, we present results of a detailed kinetic analysis of a family II PPase from Streptococcus gordonii (sgPPase), which was undertaken to elucidate the factors underlying the different properties of family I and 11 PPases. We measured rates of PPi hydrolysis, PPi synthesis, and P-i/water oxygen exchange catalyzed by sgPPase with Mn2+, Mg2+, or Co2+ in the high-affinity metal-binding site and Mg2+ in the other sites, as well as the binding affinities for several active-site ligands (metal cofactors, fluoride, and P-i). On the basis of these data, we deduced a minimal four-step kinetic scheme and evaluated microscopic rate constants for all eight relevant reaction steps. Comparison of these results with those obtained previously for the well-known family I PPase from Saccharomyces cerevisiae (Y-PPase) led to the following conclusions: (a) catalysis by sgPPase does not involve the enzyme-PPi complex isomerization known to occur in family I PPases, (b) the values of k(cat) for the magnesium forms of sgPPase and Y-PPase are similar because of similar rates of bound PPi hydrolysis and product release, (c) the marked acceleration of sgPPase catalysis in the presence of Mn2+ and Co2+ results from a combined effect of these ions on bound PPi hydrolysis and P-i release, (d) sgPPase exhibits lower affinity for both PPi and P-i, and (e) sgPPase and Y-PPase exhibit similar values of k(cat)/K-m, which characterizes the PPase efficiency in vivo (i.e., at nonsaturating PPi concentrations).
  •  
3.
  • Edqvist, Johan, et al. (författare)
  • Plants express a lipid transfer protein with high similarity to mammalian sterol carrier protein-2.
  • 2004
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 279:51, s. 53544-53
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the first report describing the cloning and characterization of sterol carrier protein-2 (SCP-2) from plants. Arabidopsis thaliana SCP-2 (AtSCP-2) consists of 123 amino acids with a molecular mass of 13.6 kDa. AtSCP-2 shows 35% identity and 56% similarity to the human SCP-2-like domain present in the human D-bifunctional protein (DBP) and 30% identity and 54% similarity to the human SCP-2 encoded by SCP-X. The presented structural models of apo-AtSCP-2 and the ligand-bound conformation of AtSCP-2 reveal remarkable similarity with two of the structurally known SCP-2s, the SCP-2-like domain of human DBP and the rabbit SCP-2, correspondingly. The AtSCP-2 models in both forms have a similar hydrophobic ligand-binding tunnel, which is extremely suitable for lipid binding. AtSCP-2 showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC) from donor membranes to acceptor membranes. The transfer of BODIPY-PC was almost completely inhibited after addition of 1-palmitoyl 2-oleoyl phosphatidylcholine or ergosterol. Dimyristoyl phosphatidic acid, stigmasterol, steryl glucoside, and cholesterol showed a moderate to marginal ability to lower the BODIPY-PC transfer rate, and the single chain palmitic acid and stearoyl-coenzyme A did not affect transfer at all. Expression analysis showed that AtSCP-2 mRNA is accumulating in most plant tissues. Plasmids carrying fusion genes between green fluorescent protein and AtSCP-2 were transformed with particle bombardment to onion epidermal cells. The results from analyzing the transformants indicate that AtSCP-2 is localized to peroxisomes.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy