SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sarkar R.) srt2:(2020-2024)"

Search: WFRF:(Sarkar R.) > (2020-2024)

  • Result 1-40 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Abdalla, H., et al. (author)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
4.
  • Aartsen, M. G., et al. (author)
  • Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data IceCube Collaboration
  • 2020
  • In: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 80:1
  • Journal article (peer-reviewed)abstract
    • The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above similar to 1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO=15.3% and CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of delta CP and obtained from energies E nu greater than or similar to 5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
  •  
5.
  • Abbasi, R., et al. (author)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • In: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Journal article (peer-reviewed)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
6.
  • Abbasi, R., et al. (author)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Journal article (peer-reviewed)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
7.
  • Abbasi, R., et al. (author)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Journal article (peer-reviewed)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
8.
  • Abbasi, R., et al. (author)
  • Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 961:1
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory has been continuously taking data to search for O(0.5–10) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O(10) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.
  •  
9.
  • Abbasi, R., et al. (author)
  • IceCat-1: The IceCube Event Catalog of Alert Tracks
  • 2023
  • In: Astrophysical Journal, Supplement Series. - : IOP Publishing Ltd. - 1538-4365 .- 0067-0049. ; 269:1
  • Journal article (peer-reviewed)abstract
    • We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert's reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT.
  •  
10.
  • Abbasi, R., et al. (author)
  • Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 946:1
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.
  •  
11.
  • Abbasi, R., et al. (author)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Journal article (peer-reviewed)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric νμ flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (>10σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric temperatures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA’s AQUA satellite. For the observed 10 % seasonal change of effective atmospheric temperature we measure a 3.5(3) % change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correlation of 4.3 % as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
12.
  • Abbasi, R., et al. (author)
  • Search for 10-1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 964:2
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
13.
  • Abbasi, R., et al. (author)
  • Search for decoherence from quantum gravity with atmospheric neutrinos
  • 2024
  • In: Nature Physics. - 1745-2481 .- 1745-2473. ; 20:6, s. 913-920
  • Journal article (peer-reviewed)abstract
    • Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
  •  
14.
  • Abbasi, R., et al. (author)
  • Search for neutrino lines from dark matter annihilation and decay with IceCube
  • 2023
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 108:10
  • Journal article (peer-reviewed)abstract
    • Dark matter particles in the Galactic Center and halo can annihilate or decay into a pair of neutrinos producing a monochromatic flux of neutrinos. The spectral feature of this signal is unique and it is not expected from any astrophysical production mechanism. Its observation would constitute a dark matter smoking gun signal. We performed the first dedicated search with a neutrino telescope for such signal, by looking at both the angular and energy information of the neutrino events. To this end, a total of five years of IceCube's DeepCore data has been used to test dark matter masses ranging from 10 GeV to 40 TeV. No significant neutrino excess was found and upper limits on the annihilation cross section, as well as lower limits on the dark matter lifetime, were set. The limits reached are of the order of 10-24 cm3/s for an annihilation and up to 1027 s for decaying dark matter. Using the same data sample we also derive limits for dark matter annihilation or decay into a pair of Standard Model charged particles.
  •  
15.
  • Abbasi, R., et al. (author)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Journal article (peer-reviewed)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
16.
  •  
17.
  • Addazi, A., et al. (author)
  • New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
  • 2021
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:7
  • Journal article (peer-reviewed)abstract
    • The violation of baryon number, , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation () via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state (), and neutron disappearance (n → n'); the effective process of neutron regeneration () is also possible. The program can be used to discover and characterize mixing in the neutron, antineutron and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis and the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.
  •  
18.
  • Menkveld, Albert J., et al. (author)
  • Nonstandard Errors
  • 2024
  • In: JOURNAL OF FINANCE. - : Wiley-Blackwell. - 0022-1082 .- 1540-6261. ; 79:3, s. 2339-2390
  • Journal article (peer-reviewed)abstract
    • In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
  •  
19.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
20.
  •  
21.
  • Arrowsmith, C. D., et al. (author)
  • Generating ultradense pair beams using 400 GeV/c protons
  • 2021
  • In: Physical Review Research. - : AMER PHYSICAL SOC. - 2643-1564. ; 3:2
  • Journal article (peer-reviewed)abstract
    • An experimental scheme is presented for generating low-divergence, ultradense, relativistic, electron-positron beams using 400 GeV/c protons available at facilities such as HiRadMat and AWAKE at CERN. Preliminary Monte Carlo and particle-in-cell simulations demonstrate the possibility of generating beams containing 10(13)-10(14) electron-positron pairs at sufficiently high densities to drive collisionless beam-plasma instabilities, which are expected to play an important role in magnetic field generation and the related radiation signatures of relativistic astrophysical phenomena. The pair beams are quasineutral, with size exceeding several skin depths in all dimensions, allowing the examination of the effect of competition between transverse and longitudinal instability modes on the growth of magnetic fields. Furthermore, the presented scheme allows for the possibility of controlling the relative density of hadrons to electron-positron pairs in the beam, making it possible to explore the parameter spaces for different astrophysical environments.
  •  
22.
  • Arrowsmith, C. D., et al. (author)
  • Laboratory realization of relativistic pair-plasma beams
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black-hole and neutron-star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with electron-positron pairs. Their role in the dynamics of such environments is in many cases believed to be fundamental, but their behavior differs significantly from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies, which are rather limited. We present the first experimental results confirming the generation of high-density, quasi-neutral, relativistic electron-positron pair beams using the 440 GeV/c beam at CERN’s Super Proton Synchrotron (SPS) accelerator. Monte Carlo simulations agree well with the experimental data and show that the characteristic scales necessary for collective plasma behavior, such as the Debye length and the collisionless skin depth, are exceeded by the measured size of the produced pair beams. Our work opens up the possibility of directly probing the microphysics of pair plasmas beyond quasi-linear evolution into regimes that are challenging to simulate or measure via astronomical observations.
  •  
23.
  •  
24.
  • Thekkinkattil, D., et al. (author)
  • Assessing variability in breast cancer management across the world: results of a questionnaire survey amongst global international experts in breast cancer management
  • 2022
  • In: Ecancermedicalscience. - : Ecancer Global Foundation. - 1754-6605. ; 16
  • Journal article (peer-reviewed)abstract
    • Background: Breast cancer is the most common cancer in women worldwide with an estimated 2.3 million breast cancer cases diagnosed annually. The outcome of breast cancer management varies widely across the globe which could be due to a multitude of factors. Hence, a blanket approach in standardisation of care across the world is neither practical nor feasible.Aim: To assess the extent and type of variability in breast cancer management across the globe and to do a gap analysis of patient care pathway.Method: An online questionnaire survey and virtual consensus meeting was carried out amongst 31 experts from 25 countries in the field of breast cancer surgical management. The questionnaire was designed to understand the variability in diagnosis and treatment of breast cancer, and potential factors contributing to this heterogeneity.Result: The questionnaire survey shows a wide variation in breast surgical training, diagnosis and treatment pathways for breast cancer patients. There are several factors such as socioeconomic status, patient culture and preferences, lack of national screening programmes and training, and paucity of resources, which are barriers to the consistent delivery of high-quality care in different parts of the world.Conclusion: On-line survey platforms distributed to global experts in breast cancer care can assess gaps in the diagnosis and treatment of breast cancer patients. This survey confirms the need for an in-depth gap analysis of patient care pathways and treatments to enable the development of personalised plans and policies to standardise high quality care.
  •  
25.
  • Thota, S., et al. (author)
  • Unraveling the nature of ferrimagnetism and associated exchange interactions in distorted honeycomb Ni4Nb2O9
  • 2022
  • In: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:13
  • Journal article (peer-reviewed)abstract
    • Ferrimagnetism in orthorhombic Ni4Nb2O9 below its Neel temperature, T-FN similar to 76K is reported to result from two inequivalent Ni2+ ions having different magnetic moments. However, a clear understanding of the temperature variation of its magnetization [M(T)] for T > T-FN and T < T-FN in terms of a single set of exchange parameters is still lacking. In this work, experimental results obtained from a detailed analysis of the temperature and magnetic field dependence of magnetization [M(T, H)], ac-magnetic susceptibility [chi(ac)( f, T, H)], and heat-capacity [C-P(T, H)] measurements are combined with theoretical analysis to provide new insights into the nature of ferrimagnetism in Ni4Nb2O9. X-ray diffraction/Rietveld analysis of the prepared sample yielded the structural parameters of the orthorhombic crystal in agreement with previous studies, whereas x-ray photoelectron spectroscopy confirmed the Ni2+ and Nb5+ electronic states in Ni4Nb2O9. Analysis of chi(ac)(T) shows the paramagnetic-to-ferrimagnetic transition occurs at 76.5 K (T-FN), which increases with applied field H as T-FN proportional to H-0.35 due to the coupling of the ferromagnetic component with H. For T > T-FN, the chi(dc) versus T data are fitted to the Neel's expression for ferrimagnets, yielding the g-factors for the two Ni2+ ions as g(A) = 2.47 and g(B) = 2.10. Also, the antiferromagnetic molecular field constants between the A and B sublattices were evaluated as N-AA = 26.31, N-BB = 8.59, and N-AB = 43.06, which, in turn, yield the antiferromagnetic exchange parameters: J(AA)/k(B) = 4.27 K, J(BB)/k(B) = 1.40 K, and J(AB)/k(B) = 6.98 K. For T < T-FN, the M versus T data clearly show the magnetic compensation point at T-COM similar to 33 K. The mathematical model presented here using the magnitudes of NAA, NBB, and NAB correctly predicts the position of T-COM as well the temperature variation of M both above and below T-COM. The data of C-P(T) versus T shows a lambda-type anomaly across T-FN. After subtracting the lattice contribution, the C-P(T) data are fitted to C-P = A(T - T-N)((-alpha)) yielding the critical exponent alpha = 0.14(0.12) for T < T-FN (T > T-FN), which is a characteristic of second-order phase transition. Magnetic entropy changes determined from the M-H isotherms shows that the applied field H enhances the magnetic ordering for T > T-FN and T < T-COM, but for T-COM < T < T-FN, the spin disorder increases with the increase in H. The temperature variation of the measured coercivity H-C(T) and remanence M-R(T) from 1.9 K to T-FN initially show a decreasing trend, becoming zero at T-COM, then followed by an increase and eventually becoming zero again at T-FN.
  •  
26.
  • Ahmed, Anisuddin, et al. (author)
  • Measuring the effectiveness of an integrated intervention package to improve the level of infection prevention and control : a multi-centre study in Bangladesh
  • 2024
  • In: Journal of Hospital Infection. - : Elsevier. - 0195-6701 .- 1532-2939. ; 145, s. 22-33
  • Journal article (peer-reviewed)abstract
    • Background: Infection prevention and control (IPC) is a critical component of delivering safe, effective and high -quality healthcare services, and eliminating avoidable healthcare -associated infections (HAIs) in health facilities, predominantly in populationdense settings such as Bangladesh.Aim: Our study aimed to assess the effect of an integrated intervention package in improving the IPC level of the health facilities in Bangladesh.Methods: We conducted a pre -post intervention study in six district hospitals (DHs) and 13 Upazila Health Complexes (UHCs) in the six districts of Bangladesh. Baseline and endline assessments were conducted between March and December 2021 using the adapted World Health Organization Infection Prevention and Control Assessment Framework (WHO-IPCAF) tool. The IPCAF score, ranging from 0-800, was calculated by adding the scores of eight components, and the IPC promotion and practice level was categorized as Inadequate (0 -200), Basic (201-400), Intermediate (401-600) and Advanced (601-800). The integrated intervention package including IPC committee formation, healthcare provider training, logistics provision, necessary guidelines distribution, triage/flu corners establishment, and infrastructure development was implemented in all facilities.Results: The average IPCAF score across all the facilities showed a significant increase from 16% (95% CI: 11.5-20.65%) to 54% (95% CI: 51.4-57.1%). Overall, the IPCAF score increased by 34 percentage points (P<0.001) in DHs and 40 percentage points (P<0.001) in UHCs. Following the intervention, 12 (three DHs, nine UHCs) of 19 facilities progressed from inadequate to intermediate, and another three DHs upgraded from basic to intermediate in terms of IPC level.Conclusion: The integrated intervention package improved IPCAF score in all facilities.
  •  
27.
  • Arheimer, Berit, et al. (author)
  • The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)
  • 2024
  • In: Hydrological Sciences Journal. - 0262-6667 .- 2150-3435.
  • Journal article (peer-reviewed)abstract
    • The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.
  •  
28.
  •  
29.
  • Grinenko, V., et al. (author)
  • State with spontaneously broken time-reversal symmetry above the superconducting phase transition
  • 2021
  • In: Nature Physics. - : Springer Nature. - 1745-2473 .- 1745-2481. ; 17:11, s. 1254-1259
  • Journal article (peer-reviewed)abstract
    • The most well-known example of an ordered quantum state—superconductivity—is caused by the formation and condensation of pairs of electrons. Fundamentally, what distinguishes a superconducting state from a normal state is a spontaneously broken symmetry corresponding to the long-range coherence of pairs of electrons, leading to zero resistivity and diamagnetism. Here we report a set of experimental observations in hole-doped Ba1−xKxFe2As2. Our specific-heat measurements indicate the formation of fermionic bound states when the temperature is lowered from the normal state. However, when the doping level is x ≈ 0.8, instead of the characteristic onset of diamagnetic screening and zero resistance expected below the superconducting phase transition, we observe the opposite effect: the generation of self-induced magnetic fields in the resistive state, measured by spontaneous Nernst effect and muon spin rotation experiments. This combined evidence indicates the existence of a bosonic metal state in which Cooper pairs of electrons lack coherence, but the system spontaneously breaks time-reversal symmetry. The observations are consistent with the theory of a state with fermionic quadrupling, in which long-range order exists not between Cooper pairs but only between pairs of pairs.
  •  
30.
  • Sarkar, Souvik, et al. (author)
  • Design, synthesis, and evaluation of novel Δ2-thiazolino 2-pyridone derivatives that potentiate isoniazid activity in an isoniazid-resistant mycobacterium tuberculosis mutant
  • 2023
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 66:16, s. 11056-11077
  • Journal article (peer-reviewed)abstract
    • Mycobacterium tuberculosis (Mtb) drug resistance poses an alarming threat to global tuberculosis control. We previously reported that C10, a ring-fused thiazolo-2-pyridone, inhibits Mtb respiration, blocks biofilm formation, and restores the activity of the antibiotic isoniazid (INH) in INH-resistant Mtb isolates. This discovery revealed a new strategy to address INH resistance. Expanding upon this strategy, we identified C10 analogues with improved potency and drug-like properties. By exploring three heterocycle spacers (oxadiazole, 1,2,3-triazole, and isoxazole) on the ring-fused thiazolo-2-pyridone scaffold, we identified two novel isoxazoles, 17h and 17j. 17h and 17j inhibited Mtb respiration and biofilm formation more potently with a broader therapeutic window, were better potentiators of INH-mediated inhibition of an INH-resistant Mtb mutant, and more effectively inhibited intracellular Mtb replication than C10. The (−)17j enantiomer showed further enhanced activity compared to its enantiomer and the 17j racemic mixture. Our potent second-generation C10 analogues offer promise for therapeutic development against drug-resistant Mtb.
  •  
31.
  • Abercrombie, Daniel, et al. (author)
  • Dark Matter benchmark models for early LHC Run-2 Searches : Report of the ATLAS/CMS Dark Matter Forum
  • 2020
  • In: Physics of the Dark Universe. - : Elsevier BV. - 2212-6864. ; 27
  • Journal article (peer-reviewed)abstract
    • This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.
  •  
32.
  • Dan, Tinku, et al. (author)
  • Local structural evolution in the anionic solid solution ZnSexS1-x
  • 2021
  • In: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 104:18
  • Journal article (peer-reviewed)abstract
    • The century-old Vegard's law has been remarkably accurate in describing the evolution of the lattice parameters of almost all solid solutions. Contractions or expansions of lattice parameters of such systems depend on the size of the guest atom being smaller or larger than the host atom it replaces to form the solid solution. This has given rise to the concept of "chemical pressure" in analogy to the physical pressure. We have investigated using EXAFS the evolution of the local structure in terms of atom-pair distances extending up to the third-nearest neighbors in the family of compounds, ZnSexS1-x as an example of an anionic solid solution, in contrast to all previous studies focusing on cationic solid solutions. Our results establish several common features between these two types of solid solutions, while strongly suggesting that the concept of a chemical pressure is inaccurate and misleading. Most interestingly, we also find a qualitative difference between the cationic solid solutions, reported earlier, and the anionic solid solution.
  •  
33.
  • Goswami, Sreetosh, et al. (author)
  • Charge disproportionate molecular redox for discrete memristive and memcapacitive switching
  • 2020
  • In: Nature Nanotechnology. - : Springer Science and Business Media LLC. - 1748-3387 .- 1748-3395. ; 15:5, s. 380-389
  • Journal article (peer-reviewed)abstract
    • Electronic symmetry breaking by charge disproportionation results in multifaceted changes in the electronic, magnetic and optical properties of a material, triggering ferroelectricity, metal/insulator transition and colossal magnetoresistance. Yet, charge disproportionation lacks technological relevance because it occurs only under specific physical conditions of high or low temperature or high pressure. Here we demonstrate a voltage-triggered charge disproportionation in thin molecular films of a metal-organic complex occurring in ambient conditions. This provides a technologically relevant molecular route for simultaneous realization of a ternary memristor and a binary memcapacitor, scalable down to a device area of 60 nm(2). Supported by mathematical modelling, our results establish that multiple memristive states can be functionally non-volatile, yet discrete-a combination perceived as theoretically prohibited. Our device could be used as a binary or ternary memristor, a binary memcapacitor or both concomitantly, and unlike the existing 'continuous state' memristors, its discrete states are optimal for high-density, ultra-low-energy digital computing. Charge disproportionation in thin molecular films of a metal-organic complex enables the realization of a ternary memristor and binary memcapacitor.
  •  
34.
  • Harrison, Gregory A., et al. (author)
  • Inducing vulnerability to InhA inhibition restores isoniazid susceptibility in drug-resistant Mycobacterium tuberculosis
  • 2024
  • In: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 15:3
  • Journal article (peer-reviewed)abstract
    • Of the approximately 10 million cases of Mycobacterium tuberculosis (Mtb) infections each year, over 10% are resistant to the frontline antibiotic isoniazid (INH). INH resistance is predominantly caused by mutations that decrease the activity of the bacterial enzyme KatG, which mediates the conversion of the pro-drug INH to its active form INH-NAD. We previously discovered an inhibitor of Mtb respiration, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a collection of INH-resistant mutants to INH through an unknown mechanism. To investigate the mechanism of action of C10, we exploited the toxicity of high concentrations of C10 to select for resistant mutants. We discovered two mutations that confer resistance to the disruption of energy metabolism and allow for the growth of Mtb in high C10 concentrations, indicating that growth inhibition by C10 is associated with inhibition of respiration. Using these mutants as well as direct inhibitors of the Mtb electron transport chain, we provide evidence that inhibition of energy metabolism by C10 is neither sufficient nor necessary to potentiate killing by INH. Instead, we find that C10 acts downstream of INH-NAD synthesis, causing Mtb to become particularly sensitive to inhibition of the INH-NAD target, InhA, without changing the concentration of INH-NAD or the activity of InhA, the two predominant mechanisms of potentiating INH. Our studies revealed that there exists a vulnerability in Mtb that can be exploited to render Mtb sensitive to otherwise subinhibitory concentrations of InhA inhibitor. IMPORTANCE Isoniazid (INH) is a critical frontline antibiotic to treat Mycobacterium tuberculosis (Mtb) infections. INH efficacy is limited by its suboptimal penetration of the Mtb-containing lesion and by the prevalence of clinical INH resistance. We previously discovered a compound, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a set of INH-resistant mutants to INH. Resistance is typically mediated by katG mutations that decrease the activation of INH, which is required for INH to inhibit the essential enzyme InhA. Our current work demonstrates that C10 re-sensitizes INH-resistant katG-hypomorphs without enhancing the activation of INH. We furthermore show that C10 causes Mtb to become particularly vulnerable to InhA inhibition without compromising InhA activity on its own. Therefore, C10 represents a novel strategy to curtail the development of INH resistance and to sensitize Mtb to sub-lethal doses of INH, such as those achieved at the infection site.
  •  
35.
  • Pramanik, P., et al. (author)
  • Neutron diffraction evidence for local spin canting, weak Jahn-Teller distortion, and magnetic compensation in Ti1-xMnxCo2O4 spinel
  • 2020
  • In: Journal of Physics. - : IOP PUBLISHING LTD. - 0953-8984 .- 1361-648X. ; 32:24
  • Journal article (peer-reviewed)abstract
    • A systematic study using neutron diffraction and magnetic susceptibility is reported on Mn substituted ferrimagnetic inverse spinel Ti1-xMnxCo2O4 in the temperature interval 1.6 K T 300 K. Our neutron diffraction study reveals cooperative distortions of the TO6 octahedra in the Ti1-xMnxCo2O4 system for all the Jahn-Teller active ions T = Mn3+ , Ti3+ and Co3+ , having the electronic configurations 3d(1), 3d(4) and 3d(6), respectively which are confirmed by the x-ray photoelectron spectroscopy. Two specific compositions (x = 0.2 and 0.4) have been chosen in this study because these two systems show unique features such as; (i) noncollinear Yafet-Kittel type magnetic ordering, and (ii) weak tetragonal distortion with c/a < 1, in which the apical bond length d(c)(T-B-O) is longer than the equatorial bond length d(ab)(T-B-O) due to the splitting of the e(g) level of Mn3+ ions into and . For the composition x = 0.4, the distortion in the TBO6 octahedra is stronger as compared to x = 0.2 because of the higher content of trivalent Mn. Ferrimagnetic ordering in Ti0.6Mn0.4Co2O4 and Ti0.8Mn0.2Co2O4 sets in at 110.3 and 78.2 K, respectively due to the presence of unequal magnetic moments of cations, where Ti3+ , Mn3+ , and Co3+ occupy the octahedral, whereas, Co2+ sits in the tetrahedral site. For both compounds an additional weak antiferromagnetic component could be observed lying perpendicular to the ferrimagnetic component. The analysis of static and dynamic magnetic susceptibilities combined with the heat-capacity data reveals a magnetic compensation phenomenon (MCP) at T-COMP = 25.4 K in Ti0.8Mn0.2Co2O4 and a reentrant spin-glass behaviour in Ti0.6Mn0.4Co2O4 with a freezing temperature of 110.1 K. The MCP in this compound is characterized by sign reversal of magnetization and bipolar exchange bias effect below T-COMP with its magnitude depending on the direction of external magnetic field and the cooling protocol.
  •  
36.
  • Rajesh Kumar, R., et al. (author)
  • Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits
  • 2024
  • In: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; In Press
  • Journal article (peer-reviewed)abstract
    • Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.
  •  
37.
  • Sarkar, K., et al. (author)
  • Effects of magnetic fields on the Datta-Das spin field-effect transistor
  • 2020
  • In: Physical Review B. - 2469-9950. ; 102:11
  • Journal article (peer-reviewed)abstract
    • A Datta-Das spin field-effect transistor is built of a heterostructure with a Rashba spin-orbit interaction (SOI) at the interface (or quantum well) separating two possibly magnetized reservoirs. The particle and spin currents between the two reservoirs are driven by chemical potentials that are (possibly) different for each spin direction. These currents are also tuned by varying the strength of the SOI, which changes the amount of the rotation of the spins of electrons crossing the heterostructure. Here we investigate the dependence of these currents on additional Zeeman fields on the heterostructure and on variations of the reservoir magnetizations. In contrast to the particle current, the spin currents are not necessarily conserved; an additional spin polarization is injected into the reservoirs. If a reservoir has a finite (equilibrium) magnetization, then we surprisingly find that the spin current into that reservoir can only have spins which are parallel to the reservoir magnetization, independent of all the other fields. This spin current can be enhanced by increasing the magnetization of the other reservoir, and can also be tuned by the SOI and the various magnetic fields. When only one reservoir is magnetized then the spin current into the other reservoir has arbitrary tunable size and direction. In particular, this spin current changes as the magnetization of the other reservoir is rotated. The optimal conditions for accumulating spin polarization on an unpolarized reservoir are to either apply a Zeeman field in addition to the SOI, or to polarize the other reservoir.
  •  
38.
  •  
39.
  • Shukla, A., et al. (author)
  • Computational Design of Additively Printable Nickel Superalloys
  • 2020
  • In: 14th International Symposium on Superalloys, Superalloys 2021. - Cham : Springer Science and Business Media Deutschland GmbH. ; , s. 1066-1074
  • Conference paper (peer-reviewed)abstract
    • The recent advances in additive manufacturing (AM) have led to printing of complex structural components. The highly non-equilibrium processing conditions encountered during direct metal laser melting (DMLM) frequently lead to micro-cracking in high-temperature capable Ni-superalloys, irrespective of processing conditions, limiting their current applicability. This paper aims to develop a general criterion to assess printability of a Ni-superalloy solely based on its composition. Thirty-four Ni-superalloys spanning a wide range of alloying elements were printed, each with twenty-four process conditions, and their crack densities were measured in order to have a consistent set of experimental data for building a model. The models available in literature for predicting cracking susceptibility were evaluated against the experimental data. Finally, a hybrid model, based on physics-based quantities, was built with the most significant input features (x’s). This model correlates well with the experimental data and is applicable across a wide range of Ni-superalloy compositions.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-40 of 40
Type of publication
journal article (38)
conference paper (1)
research review (1)
Type of content
peer-reviewed (39)
other academic/artistic (1)
Author/Editor
Zhang, Z. (14)
Kumar, A. (13)
Bernardini, E. (13)
Chen, C. (12)
Kolanoski, H. (12)
Moore, R. W. (12)
show more...
Nagai, R. (12)
Bai, X. (12)
Silva, M. (12)
Snihur, R. (12)
Kowalski, M. (12)
Van Eijndhoven, N. (12)
Ackermann, M. (12)
Adams, J. (12)
Aguilar, J. A. (12)
Barwick, S. W. (12)
Bay, R. (12)
Beatty, J. J. (12)
BenZvi, S. (12)
Berley, D. (12)
Besson, D. Z. (12)
Blaufuss, E. (12)
Chirkin, D. (12)
Cowen, D. F. (12)
De Clercq, C. (12)
Desiati, P. (12)
de Vries, K. D. (12)
de Wasseige, G. (12)
DeYoung, T. (12)
Diaz-Velez, J. C. (12)
Ehrhardt, T. (12)
Fazely, A. R. (12)
Gerhardt, L. (12)
Gonzalez, J. G. (12)
Grant, D. (12)
Halzen, F. (12)
Hanson, K. (12)
Helbing, K. (12)
Hickford, S. (12)
Hoffman, K. D. (12)
Hoshina, K. (12)
Ishihara, A. (12)
Japaridze, G. S. (12)
Kappes, A. (12)
Karg, T. (12)
Karle, A. (12)
Kauer, M. (12)
Kelley, J. L. (12)
Kheirandish, A. (12)
Kiryluk, J. (12)
show less...
University
Uppsala University (15)
Stockholm University (15)
Chalmers University of Technology (13)
Karolinska Institutet (8)
Lund University (5)
Royal Institute of Technology (4)
show more...
University of Gothenburg (3)
Umeå University (3)
Örebro University (1)
Linköping University (1)
Stockholm School of Economics (1)
Linnaeus University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (40)
Research subject (UKÄ/SCB)
Natural sciences (27)
Medical and Health Sciences (8)
Engineering and Technology (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view