SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sathre Roger 1964 ) srt2:(2010-2014)"

Sökning: WFRF:(Sathre Roger 1964 ) > (2010-2014)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Building energy-efficiency standards in a life cycle primary energy perspective
  • 2011
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788 .- 1872-6178. ; 43:7, s. 1589-1597
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we analyze the life cycle primary energy use of a wood-frame apartment building designed to meet the current Swedish building code, the Swedish building code of 1994 or the passive house standard, and heated with district heat or electric resistance heating. The analysis includes the primary energy use during the production, operation and end-of-life phases. We find that an electric heated building built to the current building code has greater life cycle primary energy use relative to a district heated building, although the standard for electric heating is more stringent. Also, the primary energy use for an electric heated building constructed to meet the passive house standard is substantially higher than for a district heated building built to the Swedish building code of 1994. The primary energy for material production constitutes 5% of the primary energy for production and space heating and ventilation of an electric heated building built to meet the 1994 code. The share of production energy increases as the energy-efficiency standard of the building improves and when efficient energy supply is used, and reaches 30% for a district heated passive house. This study shows the significance of a life cycle primary energy perspective and the choice of heating system in reducing energy use in the built environment.
  •  
2.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building
  • 2012
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 92:1, s. 462-472
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation and end-of-life phases. Based on hourby- hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the benefit of thermal mass inherent in concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with CHP-based district heating would be an effective means of reducing primary energy use in the built environment.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Lifecycle carbon implications of conventional and low-energy multi-storey timber building systems
  • 2014
  • Ingår i: Energy and Buildings. - : Elsevier. - 0378-7788 .- 1872-6178. ; 82, s. 194-210
  • Tidskriftsartikel (refereegranskat)abstract
    • A consequential-based lifecycle approach is used here to explore the carbon implications of conventional and low-energy versions of three timber multi-storey building systems. The building systems are made of massive wood using cross laminated timber (CLT) elements; beam-and-column using glulam and laminated veneer lumber (LVL) elements; and prefabricated modules using light-frame volume elements. The analysis encompasses the entire resource chains during the lifecycle of the buildings, and tracks the flows of carbon from fossil energy, industrial process reactions, changes in carbon stocks in materials, and potential avoided fossil emissions from substitution of fossil energy by woody residues. The results show that the low-energy version of the CLT building gives the lowest lifecycle carbon emission while the conventional version of the beam-and-column building gives the highest lifecycle emission. Compared to the conventional designs, the low-energy designs reduce the total carbon emissions (excluding from tap water heating and household and facility electricity) by 9%, 8% and 9% for the CLT, beam-and-column and modular systems, respectively, for a 50-year lifespan located in Växjö. The relative significance of the construction materials to the fossil carbon emission varies for the different energy-efficiency levels of the buildings, with insulation dominating for the low-energy houses and plasterboard dominating for the conventional houses.
  •  
8.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Lifecycle primary energy analysis of low-energy timber building systems for multi-story residential buildings
  • 2014
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788 .- 1872-6178. ; 81, s. 84-97
  • Tidskriftsartikel (refereegranskat)abstract
    • A system-wide lifecycle approach is used here to explore the primary energy implications of three timber building systems for a multi-storey building designed to a high energy-efficiency level. The three building systems are: cross laminated timber, beam -and-column, and modular prefabricated systems. The analysis considers the energy and material flows in the production, use and post-use lifecycle stages of the buildings. The effects of insulation material options and the contribution of different building elements to the production energy for the buildings are explored. The results show that external and internal walls account for the biggest share of the production energy for all building systems and its contribution is comparable for the different systems. In contrast, there is significant variation in the production primary energy for the roof-ceilings and intermediate floor-ceilings for the different building systems. Overall, the cross laminated timber building system gives the lowest lifecycle primary energy balance, as this building is insulated with stone wool and has better airtightness in contrast to the other building systems which are insulated with glass wool and have lower airtightness performance. With improved airtightness and insulation substitution, the total primary energy use for the beam-and-column and modular building systems can be reduced by 7% and 9%, respectively.
  •  
9.
  •  
10.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Primary energy implications of ventilation heat recovery in residential buildings
  • 2011
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788 .- 1872-6178. ; 43:7, s. 1566-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we analyze the impact of ventilation heat recovery (VHR) on the operation primary energy use in residential buildings. We calculate the operation primary energy use of a case-study apartment building built to conventional and passive house standard, both with and without VHR, and using different end-use heating systems including electric resistance heating, bedrock heat pump and district heating based on combined heat and power (CHP) production. VHR increases the electrical energy used for ventilation and reduces the heat energy used for space heating. Significantly greater primary energy savings is achieved when VHR is used in resistance heated buildings than in district heated buildings. For district heated buildings the primary energy savings are small. VHR systems can give substantial final energy reduction, but the primary energy benefit depends strongly on the type of heat supply system, and also on the amount of electricity used for VHR and the airtightness of buildings. This study shows the importance of considering the interactions between heat supply systems and VHR systems to reduce primary energy use in buildings.
  •  
11.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Recycling of lumber
  • 2014. - 1
  • Ingår i: Handbook of recycling. - Waltham, MA : Elsevier. - 9780123964595 ; , s. 151-163
  • Bokkapitel (refereegranskat)abstract
    • Wood from sustainably managed forests can play important roles both as material and as fuel in a transition to a low-carbon society. Wood is widely used as an energy source and as a physical and structural material in diverse applications, including furniture and joinery, pulp and paper, and construction material. There is large potential to improve resource efficiency and thereby reduce greenhouse gas (GHG) emissions through efficient management of post-use wood materials. This chapter explores post-use management of wood products from resource efficiency and climate perspectives. Primary energy and GHG balances are important metrics to understand the resource efficiency of climate change mitigation strategies involving post-use wood products. Primary energy use largely determines natural resource efficiency and steers the environmental impacts of material recovery and production. This chapter describes the mechanisms through which post-use management of recovered wood materials can affect primary energy use and GHG impacts of wood products. To further understand the implications of different post-use management options for wood products, we then explore several quantitative case-studies.
  •  
12.
  • Eriksson, Ola, et al. (författare)
  • Climate change mitigation through increased wood use in the European construction sector - towards an integrated modelling framework
  • 2012
  • Ingår i: European Journal of Forest Research. - : Springer. - 1612-4669 .- 1612-4677. ; 131:1, s. 131-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008-2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2-0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy